Home > Articles

This chapter is from the book

Hardware Troubleshooting Tools

The level of troubleshooting most often performed on PC hardware is exchanging Field Replaceable Units (FRUs). Due to the relative low cost of computer components, it is normally not practical to troubleshoot failed components to the IC level. The cost of using a technician to diagnose the problem further, and repair it, can quickly exceed the cost of the new replacement unit.

However, a few hardware diagnostic tools can be very helpful in isolating defective hardware components. These tools include

  • Software diagnostic disk

  • Multimeter

  • Cable tester

  • POST card

Software Diagnostic Packages

Several commercially available disk-based diagnostic routines can check the system by running predetermined tests on different areas of its hardware. The diagnostic package evaluates the response from each test and attempts to produce a status report for all of the system's major components. Like the computer's self-tests, these packages produce visual and beep-coded error messages. Figure 3.1 depicts the Main menu of a typical self-booting software diagnostic package.

Figure 3.1Figure 3.1 A typical software diagnostic main menu.

This menu is the gateway to information about the system's makeup and configuration, as well as the entryway to the program's Advanced Diagnostic Test functions. You can find utilities for performing low-level formats on older hard drive types and for managing small computer system interface (SCSI) devices through this menu. In addition, options to print or show test results are available here, as is the exit point from the program.

The most common software-troubleshooting packages test the system's memory, microprocessor, keyboard, display monitor, and the disk drive's speed. If at least the system's CPU, disk drive, and clock circuits are working, you might be able to use one of these special software-troubleshooting packages to help localize system failures. They can prove especially helpful when trying to track down non-heat-related intermittent problems.

If a diagnostic program indicates that multiple items should be replaced, replace the units one at a time until the unit starts up. Then replace any units removed prior to the one that caused the system to start. This process ensures that there are not multiple bad parts. If you have replaced all the parts, and the unit still does not function properly, the diagnostic software is suspect.

Using a Multimeter in a PC

A number of test instruments can help you isolate computer hardware problems. One of the most basic pieces of electronic troubleshooting equipment is the multimeter. These test instruments are available in both analog and digital readout form and can be used to directly measure electrical values of voltage (V), current in milliamperes (mA) or amperes (A), and resistance in ohms. Therefore, these devices are referred to as VOMs (volt-ohm-milliammeters) for analog types, or DMMs (digital multimeters) for digital types.

Figure 3.2 depicts a digital multimeter. With a little finesse, you can use this device to check diodes, transistors, capacitors, motor windings, relays, and coils. This particular DMM contains facilities built in to the meter to test transistors and diodes. These facilities are in addition to its standard functions of current, voltage, and resistance measurement; however, in computer repair work, only the voltage and resistance functions are used extensively.

Figure 3.2Figure 3.2 A digital multimeter.

The first step in using the multimeter to perform tests is to select the proper function. For the most part, you never need to use the current function of the multimeter when working with computer systems; however, the voltage and resistance functions can be very valuable tools.

In computer troubleshooting, most of the tests are DC voltage readings. These measurements usually involve checking the DC side of the power-supply unit. You can make these readings between ground and one of the expansion-slot pins, or at the system board power-supply connector. It is also common to check the voltage level across a system board capacitor to verify that the system is receiving power. The voltage across most of the capacitors on the system board is 5V (DC). The DC voltages that can normally be expected in a PC-compatible system are +12V, +5V, –5V, and –12V. The actual values for these readings might vary by 5% in either direction.


It is normal practice to first set the meter to its highest voltage range to be certain that the voltage level being measured does not damage the meter.

The DC voltage function is used to take measurements in live DC circuits. It should be connected in parallel with the device being checked. This could mean connecting the reference lead (black lead) to a ground point and the measuring lead (red lead) to a test point to take a measurement, as illustrated in Figure 3.3.

Figure 3.3Figure 3.3 DC voltage check.

As an approximate value is detected, you can decrease the range setting to achieve a more accurate reading. Most meters allow for overvoltage protection; however, it is still a good safety practice to decrease the range of the meter after you have achieved an initial value.

The second most popular test is the resistance, or continuity test.


Unlike voltage checks, resistance checks are always made with power removed from the system.

Failure to turn off the power when making resistance checks can cause serious damage to the meter and can pose a potential risk to the technician. Resistance checks require that you electrically isolate the component being tested from the system. For most circuit components, this means desoldering at least one end from the board.

The resistance check is very useful in isolating some types of problems in the system. One of the main uses of the resistance function is to test fuses. You must disconnect at least one end of the fuse from the system. You should set the meter on the 1k ohm resistance setting. If the fuse is good, the meter should read near 0 ohms. If it is bad, the meter reads infinite.

The resistance function also is useful in checking for cables and connectors. By removing the cable from the system and connecting a meter lead to each end, you can check the cable's continuity conductor by conductor to verify its integrity.

You also use the resistance function to test the system's speaker. To check the speaker, simply disconnect the speaker from the system and connect a meter lead to each end. If the speaker is good, the meter should read near 8 ohms (although a smaller speaker might be 4 ohms). If the speaker is defective, the resistance reading should be 0 for shorts or infinite for opens.

Only a couple of situations involve using the AC voltage function for checking microcomputer systems. The primary use of this function is to check the commercial power being applied to the power-supply unit. As with any measurement, it is important to select the correct measurement range; however, the lethal voltage levels associated with the power supply call for additional caution when making such measurements.

The second application for the AC voltage function is to measure ripple voltage from the DC output side of the power-supply unit. This particular operation is very rarely performed in field-service situations.

Cable Testers

The most frequent hardware-related cause of network problems involves bad cabling and connectors. Several specialized, handheld devices designed for testing the various types of data communication cabling are available. These devices range from inexpensive continuity testers, to moderately priced data cabling testers, to somewhat expensive time domain reflectometers (TDR).

Although inexpensive continuity testers can be used to check for broken cables, data cabling testers are designed to perform a number of different types of tests on twisted-pair and coaxial cables. These wiring testers normally consist of two units—a master test unit and a separate load unit, as illustrated in Figure 3.4.

The master unit is attached to one end of the cable and the load unit is attached to the other. The master unit sends patterns of test signals through the cable and reads them back from the load unit. Many of these testers feature both RJ-45 and BNC connectors for testing different types of cabling. When testing twisted-pair cabling, these devices can normally detect such problems as broken wires, crossed-over wiring, shorted connections, and improperly paired connections.

Figure 3.4Figure 3.4 Cable tester.

TDRs are sophisticated testers that can be used to pinpoint the distance to a break in a cable. These devices send signals along the cable and wait for them to be reflected. The time between sending the signal and receiving it back is converted into a distance measurement. The TDR function is normally packaged along with the other cable testing functions just described. TDRs used to test fiber-optic cables are known as optical time domain reflectometers (OTDRs).

POST Cards

A POST card is a diagnostic device that plugs into the system's expansion slot and tests the operation of the system as it boots up. These cards can be as simple as interrupt and direct memory access (DMA) channel monitors, or as complex as full-fledged ROM BIOS diagnostic packages that carry out extensive tests on the system.

POST cards are normally used when the system appears to be dead, or when the system cannot read from a floppy or hard drive. The firmware tests on the card replace the normal BIOS functions and send the system into a set of tests. The value of the card lies in the fact that the tests can be carried out without the system resorting to software diagnostics located on the hard disk or in a floppy drive.

The POST routines located in most BIOS chips report two types of errors—fatal and nonfatal. If the POST encounters a fatal error, it stops the system. The error code posted on the indicator corresponds to the defective operation.

If the POST card encounters a nonfatal error, however, it notes the error and continues through the initialization routine to activate as many additional system resources as possible. When these types of errors are encountered, the POST card must be observed carefully because the error code on its indicator must be coordinated with the timing of the error message or beep code produced by the BIOS routines.

Simple POST cards come with a set of light-emitting diodes (LEDs) on them that produce coded error signals when a problem is encountered. Other cards produce beep codes and seven-segment LED readouts of the error code. Figure 3.5depicts a typical XT/AT-compatible POST card.

Figure 3.5Figure 3.5 A typical POST card.

Pearson IT Certification Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Pearson IT Certification and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Pearson IT Certification products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.pearsonitcertification.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020