Home > Articles

📄 Contents

  1. 1.4 - Compare and contrast characteristics of various types of other mobile devices
  2. Cram Quiz
  3. 1.5 - Given a scenario, connect and configure accessories and ports of other mobile devices
  4. Cram Quiz
  • Print
  • + Share This
This chapter is from the book

1.5 – Given a scenario, connect and configure accessories and ports of other mobile devices

Mobile device connectivity is imperative. For the exam, you need to know the physical ports used for charging and synchronizing, and for communicating with external devices. Then of course there are various wireless connectivity options available on today’s mini-powerhouse computers. Let’s not forget that people love to accessorize: headsets, speakers, add-on memory, the list is too long…. To simplify: be ready to provide support for a plethora of ports and gadgets!

Connection Types

Depending on what you need to accomplish with your mobile device, you might require a wired or a wireless connection. Let’s discuss these now.

Wired Connections

Wired connections use physical ports. If you have ever plugged in a mobile device to charge it, then you have used a wired connection.

The most common wired connection is USB. USB has been around for a long time and has gone through several versions and port changes. USB is used by devices that run Android (among others). However, aside from USB-C, iOS-based devices from Apple use the proprietary Lightning connector or the older 30-pin dock connector (which is much wider). Figure 3.1 shows examples of the ports and connectors that you should know for the exam, including Mini-USB, Micro-USB, USB-C, and Lightning.


FIGURE 3.1 USB and Lightning ports and connectors

If you charge a device, almost all charging cables will use a standard Type A USB port on the other end, regardless of the connector type that is used to attach to the device. That allows connectivity to the majority of charging plugs and PCs and laptops in the world. However, there are tons of adapters out there, so be ready.

At the time of writing, USB-C has become common for many Android-based smartphones and some tablets. Most likely, USB-C (and other ports) will continue to gain acceptance compared to Micro-USB, which was used by Android devices almost exclusively for a decade. For example, after years and years, and several generations of devices to use Micro-USB, the Samsung S8 was the first of that series to use the USB-C port, and in 2019 the iPad Pro began using USB-C as well. On the other hand, Mini-USB is quite uncommon, but you might see it on older devices, especially accessories for smartphones.

Another purpose of the wired port is to have the ability to tether the mobile device to a desktop or laptop computer (usually via the computer’s USB port). This tethering can allow a desktop computer or laptop to share the mobile device’s Internet connection. Tethering functionality can be very useful in areas where a smartphone has cellular access but the PC/laptop cannot connect to the Internet. Once the physical USB connection is made, the setting for this can be found in Networking > Tethering > USB Tethering, or something similar (you will usually find the Mobile Hotspot option there as well). Keep in mind that Wi-Fi capability on the smartphone will usually be disabled when USB tethering is enabled, and that the user must have hotspot service with their cellular provider for USB tethering to work. Also, depending on the operating system, the PC or laptop that is connected to the smartphone might need a driver installed to communicate with it via USB. Finally, the tethered connection might render current LAN connections on the PC inoperable.

Wireless Connections

Wireless technologies are what really make a smartphone attractive to users. It’s a fact, most people would rather do without cables, so technologies such as Bluetooth, NFC, IR, and hotspots make a smartphone functional, and easier to use.

Given the inherent mobility of smartphones and tablets, most technologies regarding communications and control are wireless. If designed and configured properly, wireless connections offer ease of use, efficiency, and even great speed. We’ll discuss Wi-Fi, cellular, GPS, and similar data-related wireless technologies later in the book. For now, let’s focus on wireless connections used by mobile devices to communicate with accessories and other mobile devices.

One of the most common technologies used is Bluetooth. This is a technology that allows users to incorporate wearable technology (such as headsets, earpieces, earbuds, and smartwatches) with their existing mobile devices. But the technology goes much farther; for example, it allows for the streaming of music to external speakers and an automobile’s music system. However, Bluetooth is usually limited to about 33 feet (10 meters), which is the maximum transmission distance for Class 2 Bluetooth devices.

Another commonly used wireless technology is the mobile hotspot. When enabled on a properly equipped smartphone or tablet (with 4G or faster connection), it allows a user to connect desktops, laptops, and other mobile devices (wirelessly, of course) through the device running the hotspot, ultimately allowing access to the Internet. This can be a great way to connect your laptop or other computer if Wi-Fi goes down, often with speeds rivaling wired Internet access. But remember, there’s usually a catch! Many providers charge for data usage (unless you have a corporate plan). Because of this, it is often used as a secondary connection or as a backup plan. In addition, the further the hotspot-enabled mobile device is from a cell tower, the lower the data transfer rate. So know the pros and cons of running a hotspot on your mobile device.

Next, let’s discuss near field communication (NFC). This allows smartphones to communicate with each other via radio frequency by touching the devices together or, in some cases, by simply having them in close proximity to each other. NFC uses the radio frequency 13.56 MHz and can transmit 100 to 400 kb/s. It doesn’t sound like much—it transfers slower than Bluetooth for example—but it’s usually plenty for sending and receiving contact information, MP3s, and even photos. Besides working in peer-to-peer mode (also known as ad hoc mode), a full NFC device can also act like a smart card performing payment transactions and reading NFC tags. If you are not sure whether your device supports NFC, check the settings in the mobile OS. Most smartphones incorporate NFC technology.

Another wireless technology used by some smartphones and tablets is infrared (IR). Though it is not included on many flagship smartphones as of 2017, some mobile devices come with an IR blaster that can take control of televisions and some other devices (given they have the proper app installed). Infrared works on a different (and higher) frequency range than Wi-Fi, Bluetooth, and cellular connections, so it does not interfere with those technologies when it is used. Because so many appliances and electronics are “smart” enabled, the IR blaster becomes less important on today’s smartphones.


Well, a person has to accessorize, right? It almost seems a requirement with today’s mobile devices. Probably the number one thing that people do to augment their device is to protect it. That means using protective covers or cases, plastic or glass-based screen protectors, waterproofing, car mounts, and so on.

Then there’s add-on storage. You can never have enough memory, right? Adding long-term storage is usually accomplished with the addition of a microSD card, for example 32, 64, or 128 GB. It is common for people who shoot a lot of videos (or a whole lot of photos) to need more memory than the mobile device comes with when purchased. Some devices allow for add-on storage via a slide-out tray on the side of the device. Others don’t allow upgrades. Older devices that can have the back cover removed can be upgraded internally.

Next on the list are audio accessories. The 3.5 mm audio jack (if you have one) allows a user to connect headsets, earbuds, or small speakers. Or you can connect a 3.5 mm to 3.5 mm cable from your phone to the auxiliary port of your car radio or your all-in-one music device—though Bluetooth is usually the easier option. When it comes to music, you can connect a mobile device to anything (given the right cable or adapter): stereos or TVs, and you can even use the device when performing live. The possibilities are endless. And today’s mobile device audio ports can be programmed in such a way as to accept special credit-card readers and a host of other devices. Appliance repair persons and other maintenance workers that need to be paid onsite will often make use of this technology, though that can also be accomplished in a wireless fashion.

Getting a bit more advanced, you will also see devices such as game pads that can connect to the Micro-USB port using On-The-Go (OTG) USB technology. However, most game pads will connect wirelessly, either via Bluetooth or through Wi-Fi.

Most of today’s devices cannot be opened by the consumer without voiding the warranty. So, replacing a battery is not as easy as it once was. To do this, a heat gun and proper shims are required. However, if not done correctly, it can defeat the IP rating. That’s why manufacturers require that battery replacements be done by an authorized repair center. More important when it comes to accessories are battery chargers. Smartphones and tablets can be charged with their included AC chargers, or possibly with wireless chargers, where the unit is laid down directly on the charger. A user might also opt to use a power brick which stores a charge for a long time. Keep in mind that these “bricks” (also known as battery packs or battery charges) take a long time to charge up themselves.

We could go on for days about the accessories available for mobile devices, but that should be enough for the exams. Remember, protecting the mobile device and memory capacity are crucial. The rest of the things we discussed enable a user to increase functionality, or just plain make it more fun, but these things are usually not essential to the device performing its job. Plus, in a bring your own device (BYOD) or choose your own device (CYOD) environment, the users will often be quite limited when it comes to accessorizing. This is to prevent compatibility issues, which lead to lower productivity, and to avoid security vulnerabilities.

  • + Share This
  • 🔖 Save To Your Account