Home > Articles > Cisco > CCNA Routing and Switching

Common Protocols for Virtual Private Networks (VPNs)

Sean Wilkins, co-author of CCNA Routing and Switching 200-120 Network Simulator, discusses some of the protocols used on modern virtual private networks.
Like this article? We recommend


Maintaining the security of internal data as well as the data of clients or customers is an important part of any organization's operations. In the last few years, many organizations that didn't take information security seriously have been hacked, with the stolen data openly released—or sold to opposing parties. These incidents have been happening for years; the only difference is that lately they have been more visible, and they have affected the information of many more people.

One way of protecting data as it passes between internal and remote locations is by implementing a virtual private network (VPN). VPNs have been around for a long time (over 20 years) and have been used in two primary ways: protecting the data from a host machine to a central location (client to network), or protecting the data from one organizational network to another (network to network). Both types of VPN have been implemented over the public Internet. This article reviews some of the most common VPN types and discusses how they are typically implemented.

Generic Routing Encapsulation (GRE)

The concept of Generic Routing Encapsulation (GRE) has been around for more than 20 years. GRE is a common solution to transport the information from one network to another. The idea behind GRE is to offer a method of transporting information over an Internet Protocol (IP) medium. The protocol that is passed over the GRE tunnel can be one of several supported protocols, including the ability to transport IP inside a GRE/IP tunnel. It can also transport a number of protocols, including IPv4, IPv6, or AppleTalk, among others, with IP and IPv6 being the most common.

Typical configurations of GRE are between two endpoints in a point-to-point style. The main disadvantage of GRE is that it doesn't support any type of security (namely incryption), and the tunneled information can easily be "sniffed" with common software. However, modern implementations of GRE have extended these common initial configurations, with many VPNs utilizing GRE as part of an implementation of multiple VPN technologies. One popular implementation is to use multipoint GRE with the Next Hop Resolution Protocol (NHRP) and IP Security (IPSec).

IP Security (IPSec)

IP Security (IPSec) has been around as a concept for about as long as GRE and is used to provide a secure communications channel through an existing IP network. IPSec itself is not a single protocol but rather a group of protocols that can be implemented in a number of ways, depending on the specific requirements of the situation.

The main capabilities of IPSec include several configurable security features:

  • Confidentiality. An IPSec session can be configured to encrypt its contents, thus providing a method of sending information securely between endpoints.
  • Integrity. An IPSec session can be configured to provide integrity protection, ensuring that the same information sent from the sender is received by the receiver.
  • Authentication. An IPSec session can be configured to provide authentication, which ensures that the sender is the device/individual that it claims to be.
  • Anti-relay protection. This feature prevents a hacker from collecting information from an IPSec session and "replaying" it to gain access to a secure location.

Point-to-Point Tunneling Protocol (PPTP)

The Point-to-Point Tunneling Protocol (PPTP) has been around since the late 1990s and was initially implemented heavily in Microsoft Windows products (from Windows 95 Update 1.3 forward). PPTP takes advantage of a few other protocols to provide a complete solution, including the Point-to-Point Protocol (PPP) and an enhanced version of GRE.

PPTP works by initially setting up a control channel, which is then used to create a data tunnel. This data tunnel is encapsulated with GRE, which carries a PPP frame; PPP supports carrying multiple protocols, including IP. It also supports authentication, encryption, and compression.

PPTP is one of the easiest protocols to use in terms of configuration, but it has a number of known weaknesses with regard to confidentiality. This is because PPTP primarily uses Microsoft Point-to-Point Encryption (MPPE) to support RC4 encryption, which has known vulnerabilities.

Secure Sockets Layer (SSL) VPN

One of the most talked-about VPN technologies recently has been SSL VPN; this is mainly due to a number of different evolutions in its implementation that make it easier to deploy and use. In the past, SSL VPN was mainly used to provide support via a centralized portal, which offered limited support for a specific set of protocols. Modern implementations offer the ability to support both client-based and clientless SSL VPN options; clientless deployments are more limited than their client-based alternatives, but much thinner to implement (nothing permanently loaded on the client).

The name Secure Sockets Layer (SSL) should be familiar to most tech-savvy Internet users, as it's one of the protocols used by web browsers and file-transfer clients to secure communications. SSL VPNs use this same technology to provide a secure channel for a wide variety of protocols. One of the main advantages of SSL VPNs over other alternatives is that it utilizes the same common protocol numbers that are used for secure web traffic. These ports are almost universally forwarded across all Internet connections, and therefore sessions will not be blocked (a problem with some of the other options discussed here).


The use of VPNs has continued to expand as Internet connections have become faster, more reliable, and more widely available. Many companies are moving their remote office connections from expensive leased-line connections to Internet-based VPN connections. This trend will most likely continue as speeds and connections continue to expand.

Every network engineer will be associated with the use of a VPN in some way, whether through personal use, working with company computers on secured networks, or in the implementation and maintenance of a VPN solution. Therefore it's vital that new network engineers be familiar with at least the most commonly implemented VPN solutions and understand generally how they work. As engineers move up the ladder of vendor certifications, they will need to continue their studies into VPN configuration as well.

Pearson IT Certification Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Pearson IT Certification and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Pearson IT Certification products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.pearsonitcertification.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020