Home > Articles > VMware

  • Print
  • + Share This
This chapter is from the book

SQL Server on Hyperconverged Infrastructure

If there is one technology trend that is revolutionizing the enterprise data center more than just flash alone, it is hyperconvergence. This is where storage and compute (CPU and RAM) are provided in a single package and connected by standard Ethernet networks. By far the leader in this sector of the market is Nutanix, with its Virtual Computing Platform. This section covers key aspects of SQL Server performance and architecture of the Nutanix Virtual Computing Platform.

The Nutanix Virtual Computing Platform is built for virtualization and cloud environments, with the idea of brining the benefits and economics of web-scale architectures from companies such as Google, Facebook, and Amazon to the masses. The Nutanix solution includes storage and server compute (CPU and Memory) in a platform building block. Each building block is 2 RU and based on standard x86 server technology. The platform architecture is designed to deliver a unified, scale-out, shared-nothing cluster with no single point of failure (SPOF). Hyperconverged platforms don’t require SAN or NAS storage, or fibre channel networks, but can sit along side existing environments.

A general aspect of hyperconverged platforms and Nutanix in particular is a reduction in the number of components that need to be managed and a reduction in the overall solution complexity. The reduction in complexity and increased simplicity translates into ease of deployment and operations, such as when dynamically increasing a cluster’s size, and ease of designing and architecting successful solutions, even for business-critical applications such as SQL Server.

For designing a SQL Server environment, a Nutanix platform is arguably simpler because there are no LUNs, no RAID, no FC switches, no zoning, no masking, no registered state change notifications (RSCN), and no storage multipathing required. All management is VM and VMDK centric. An advantage of being VM and VMDK centric is that storage IO from a VMDK is seen as what it is: sequential is sequential and random is random. This allows the platform to optimize for that IO pattern without the impact of the IO Blender Effect.

This doesn’t mean you have to throw away the assets you’ve already got and that still have a book value. You can use a hyperconverged platform to offload some capacity and performance from your existing systems. This can improve your overall performance and reduce management complexity.

With Nutanix, you have one pool of storage across a distributed file system cluster called the Nutanix Distributed File System (NDFS), which includes SSDs for high performance and low latency and HDDs for cheap capacity. The different types of storage devices in the storage pool are automatically tiered using an intelligent information life cycle management (ILM) engine to ensure the most frequently used data is available in memory or in flash cache. This assumes you have sufficient capacity in your high-performance tier for the most active working set of your VMs. If you are deploying SQL Server on Nutanix, the sections of this chapter you need to follow closely are “SQL Server Database and Guest OS Design” and “Virtual Machine Storage Design,” in addition to “The Five Key Principles of Database Storage Design,” which appears at the start of this chapter.

Nutanix has a small number of model options available to try and make it easy to choose the right one and to make it easy to support. Depending on the model of platform selected, a single 2U building block can include up to four nodes, combining up to 80 CPU cores (two sockets, 10 cores each per node), 2TB RAM (512GB per node), and 8TB of high-performance storage. These building blocks can be scaled out without any artificial limits and provide linear performance as you add more VMs. If more capacity is required per node, a different building block type with up to 16TB–20TB per 2RU can be mixed and matched into a single NDFS cluster to balance both compute capacity and storage capacity and performance. Typical performance from a 2RU building block is up to a combined 100K 4KB Random Read IOs, up to 50K 4KB Random Write IOs, 1.4GBps sequential write throughput, and 3GBps sequential read throughput across four NDFS nodes. These numbers were produced using the built-in Nutanix Diagnostics Tool; actual application performance with mixed workloads will vary. You should benchmark your particular applications and seek advice from Nutanix on your particular virtualization scenarios. It should be noted that SQL Database predominant IO size will be 64KB or above if you have followed the guidance so far in this chapter.

Figure 6.46 shows an overview of the Nutanix Virtual Computing Platform Architecture, including each hypervisor host (VMware ESXi), SQL VMs (User VMs), Storage Controller VM (Controller VM), and its local disks. Each Controller VM is directly connected to the local storage controller and the connected disks using VMware DirectPath/IO. By using local storage controllers on each ESXi host access to the NDFS file system, the data access path is localized and doesn’t always require transport over the network, thereby reducing network traffic and potentially improving performance, predominantly for read operations. NDFS ensures that writes are replicated and distributes data within the cluster for data protection. The local storage controller on each host ensures that storage performance as well as storage capacity increase when additional nodes are added to a Nutanix NDFS cluster.

Figure 6.46

Figure 6.46 Nutanix Virtual Computing Platform Architecture overview.

Figure 6.47 shows an overview of a single Nutanix NDFS cluster combining many different workloads, including SQL Server VMs, into different VMware vSphere clusters.

Figure 6.47

Figure 6.47 SQL Server on the Nutanix Virtual Computing Platform.

Although the storage is local to each node, NDFS makes it appear to the hypervisor as shared storage and therefore integrates with VMware DRS, HA, and fault tolerance. The combination of SSD and HDD local storage in addition to automated tiering is aimed at balancing both cost and performance. Also, NDFS data protection techniques remove some of the performance penalties associated with RAID. The localization of data allows for performance and quality of service to be provided per host, so noisy VMs can’t greatly impact the performance of their neighbors. This allows for large mixed workload vSphere clusters that may be more efficient from a capacity and performance standpoint, while being resilient to failure.

Due to the simplified nature of the Nutanix storage architecture and NDFS, we can simplify the storage layout for SQL Server. Figure 6.48 includes a sample layout, which is standard in a Nutanix environment, consisting of a single NFS data store and single storage pool. We do not need to configure multiple LUNs or calculate LUN queue depths.

Figure 6.48

Figure 6.48 SQL Server VM disk layout on the Nutanix.

For high-performance, critical databases we would recommend you include 4 × PVSCSI controllers and split up the data files, Temp DB, and transaction logs similarly to that described in the section on SQL VM storage layout. With the four PVSCSI adapters available, we recommend that you start with two VMDKs per controller and expand the number of virtual disks per controller as evenly as necessary.

The simplified storage layout potentially provides a number of benefits to each type of SQL Database. Table 6.20 outlines some of the benefits you may be able to expect.

Table 6.20 Nutanix Benefits for OLTP and OLAP SQL Databases

Nutanix Benefits

SQL OLTP

Transactional Database

Localized I/O for low-latency operations

SSD for indexes and key database files

Ability to handle random and sequential workloads without the impact of the IO Blender Effect

SQL OLAP

Analytical Database

Local read I/O for high-performance queries and reporting

High sequential write and read throughput

Scalable performance and capacity

To demonstrate the capability of the Nutanix platform for SQL Server, a number of SQLIO benchmarks were performed as part of the “SQL on Nutanix Best Practices” white paper (http://go.nutanix.com/TechGuide-Nutanix-SQLBestPractices_Asset.html), reproduced here with permission. Figures 6.49 through 6.52 resulted from the benchmarks.

Figure 6.49

Figure 6.49 SQL Server SQLIO single VM random IOPS by block size.

Figure 6.50

Figure 6.50 SQL Server SQLIO single VM throughput by block size.

Figure 6.51

Figure 6.51 SQL Server SQLIO multiple VM IOPS scalability.

Figure 6.52

Figure 6.52 SQL Server SQLIO multiple VM throughput scalability.

Figures 6.49 through 6.52 show different performance profiles of the Nutanix Virtual Computing Platform for SQL Server VMs based on the “Nutanix SQL Best Practices” white paper, which includes the detailed configuration and testing details as well as individual IO pattern scenarios. Because most environments consist of mixed IO workloads, you should baseline your environment and consider the impact of IO mix and different IO sizes. The Nutanix platform can coexist with existing storage investments and offload workloads from existing storage platforms, thus freeing up both capacity and performance. It is a valid consideration for SQL Databases that fit within the performance envelope of the scale-out platform.

  • + Share This
  • 🔖 Save To Your Account

Pearson IT Certification Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Pearson IT Certification and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Pearson IT Certification products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.pearsonitcertification.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020