Home > Articles

Implementing and Managing Security for Network Communications

This chapter is from the book

Terms you'll need to understand:

  • Internet Protocol Security (IPSec)

  • Authentication

  • Authentication Header (AH)

  • Encapsulating Security Payload (ESP)

  • IPSec certificates

Techniques you'll need to master:

  • Planning and IPSec deployment

  • Configuring IPSec policies

  • Deploying and managing IPSec policies

You should always maintain secure communications within your network and between networks to whatever degree possible. Internet Protocol Security (IPSec) allows you to control security using flexible policies to adapt to any network. IPSec secures data in the private and public environments of your network by providing a strong cryptography-based defense.

In this chapter, we discuss securing your network with IPSec, which includes the following:

  • Planning an IPSec deployment

  • Configuring IPSec policies

  • Deploying and managing IPSec policies

Planning an IPSec Deployment

One of the best features of IPSec is its flexibility. Unfortunately, that's a double-edged sword when it comes to network design. IPSec can be configured for the needs of almost any network, but many decisions must be made regarding its configuration. Some decisions are made for you by the way in which you are using IPSec or by the types of client operating systems that you are running on your network; other decisions are made by you. We now discuss the steps that you must take to deploy IPSec, which include the following:

  • Deciding which IPSec mode to use

  • Planning authentication methods for IPSec

  • Securing authentication with IPSec

  • Testing the functionality of existing applications and services

Deciding Which IPSec Mode to Use

This decision is rather easy because it has already been made for you based on the way you are using IPSec. Basically, two different types of communications exist that you need to secure—communications within a network and communications between networks. You choose one of two modes of IPSec security—transport mode or tunnel mode—based on the type of communication you need to make secure.

Transport Mode

You can use IPSec in transport mode to secure communications between two computers on the same network. This can be server-to-server or server-to-client communications. Once configured, IPSec provides end-to-end security based on the authentication and encryption settings that you apply. Figure 3.1 illustrates the concept of IPSec transport mode.

Figure 3.1Figure 3.1 IPSec transport mode provides secure communication from endpoint to endpoint within a network.

Tunnel Mode

You can use IPSec in tunnel mode to secure communications between two networks. You define the endpoints of the tunnel, and the system maintains a secure connection between the endpoints. The endpoints are generally router interfaces. You can specify the types of encryption and authentication protocols that will be required for all traffic. Figure 3.2 illustrates the concept of IPSec tunnel mode.

Figure 3.2Figure 3.2  IPSec tunnel mode provides for secure communications between two networks.

Planning Authentication Methods for IPSec

Authentication is the process of a network entity proving its identity in a confidential manner. Because authentication must be confidential, computers need to be able to authenticate to each other using a secure method. IPSec uses three main methods of authentication. You make your choice based on the capabilities of your servers and clients and the requirements of your organization. The three main methods from which you can choose are as follows:

  • Kerberos

  • Certificates

  • Preshared key


Kerberos is the default authentication method for Windows 2000 Server and Windows Server 2003. With Kerberos, the client must prove its identity to the server and the server must also prove its identity to the client. This is referred to as mutual authentication. Kerberos can only be used with Windows 2000 Professional and later clients. You should use Kerberos when all of your clients are in the same domain or Kerberos realm and can authenticate using Kerberos and when you want to use a method that requires the least administrative effort.

Figure 3.3 illustrates that Kerberos is the default protocol in the IP security policy.


When an exam question specifies an authentication method that requires the least administrative effort, and all of the clients and servers are Windows 2000, Windows Server 2003, or Windows XP Professional, you should first determine whether all of the clients are in the same domain. If so, you should use the default Kerberos authentication method. If not, then other methods will have to be considered.


As we discussed earlier, certificates are a method of granting access to a user based on the user's unique identification and whether the user possesses the right keys or algorithms to "unlock" the appropriate doors. You issue a certificate to a computer as a means for it to hold the key and as a means for you to track that the computer has the key. You can stipulate in an IPSec policy, as shown in Figure 3.4, that the computer or user must use a certificate (Secure Server) or that it should use a certificate if it has one (Server).

Figure 3.3Figure 3.3 Kerberos is the default authentication protocol for Windows 2000 Server and for Windows Server 2003 IPSec.

Figure 3.4 illustrates the default policies that are included in Windows Server 2003. Microsoft recommends that you create your own policies by modifying the default polices or by starting from scratch and using the Create IP Security Rule Wizard. Depending on your settings, you will create a policy that must be met in its entirety for communications to continue or a policy that can be negotiated between computers.

Preshared Key

A preshared key is a string that you can use to authenticate computers as a last resort. You should not use a preshared key if any other authentication method is available. A preshared key is a symmetric key, which means that the same key that is used to encrypt can also be used to decrypt. You should configure the same string on all computers that you want to authenticate.

The main problem with a preshared key is that you have no way of knowing whether the key is discovered. Also, the key is not specific to any individual. Therefore, an attacker could use the key to authenticate to a network and you could not trace the attack back to an individual. In addition, the preshared key is stored in the Registry in plain text form. It can be configured from the Authentication Methods tab in the properties of an IPSec policy as shown in Figure 3.5.

Figure 3.4Figure 3.4 You can require or request certificates as part of an IPSec policy.

Figure 3.5Figure 3.5 You can use a string to configure a preshared key when no other authentication options exist.

Security Authentication with IPSec

As mentioned previously, your goal is to allow computers to authenticate to each other without anyone else being able to see the process. To facilitate this, the authentication process must be encrypted. Two main protocols can be used when authenticating with IPSec. These are Secure Hash Algorithm (SHA) and Message Digest 5 (MD5). In addition, after authentication takes place, you can use multiple levels of encryption for the data itself. You should be familiar with the following terms and settings for IPSec encryption. These settings are illustrated in Figure 3.6 and can be located by clicking the General tab of an IPSec policy, then the Settings button, and finally the Methods button.

  • Secure Hash Algorithm (SHA)

  • Message Digest 5 (MD5)

  • Data Encryption Standard (DES)

  • Triple DES (3DES)

Figure 3.6Figure 3.6 You can choose the type of encryption used by IPSec during authentication and during data transfer.

Secure Hash Algorithm (SHA)

Secure Hash Algorithm (SHA) is the accepted standard for securing authentication of computers working with government contracts. It is used as part of the Federal Information Processing Standard (FIPS). SHA is a very high-security method that uses a 160-bit encryption key.

Message Digest 5 (MD5)

Message Digest 5 (MD5) is used for most commercial applications. You can use MD5 to secure authentication as well as data. This high-security method uses a 128-bit encryption key. It also has a lower performance overhead than that of SHA.

Data Encryption Standard (DES)

Data Encryption Standard (DES) is the lowest encryption strength of the Diffie-Hellman algorithms. It produces only a 56-bit key and is therefore not recommended for use in a high-security environment.

Triple DES (3DES)

Triple DES (3DES) is a much stronger Diffie-Hellman algorithm than DES, and produces a 168– to 2048-bit key. It is recommended for use in medium- to high-security networks.

Testing the Functionality of Existing Applications and Services

Remember, the reason that you originally decided to use security methods was to protect the integrity and the productivity of the network. For this reason, you should always test the applications and services that you are running on your network to make sure that they can still function with the IPSec rules that you have configured. There are many reasons that an application could cease to function or function with errors. Most of these involve the fact that IPSec rules can be used to filter traffic. Sometimes these filters, as indicated in the following list, can cause unexpected results:

  • Filtered ports

  • Filtered IP addresses

  • Filtered protocols

You can use the IP Filter Wizard (see Figure 3.7) to create multiple filters in an IPSec policy rule. If you use more than one filter in a single IPSec policy rule, be aware that the order that the filters are processed in is not necessarily the order in which you are viewing them. Instead, the IPSec Policy Agent reads the policy, and the filters are processed into one ordered list that is sorted from the most to the least specific. You can use the IPSec Monitor console to view the filters sorted by their weight. If you change or delete a filter, the IPSec Policy Agent reorders the filters based on what remains. Because of this, you should always test applications that use IPSec after applying IPSec and after changing any filters. You should use a test lab, if one is available, to test the effect of IPSec rules before assigning them in a production environment.

Figure 3.7Figure 3.7 You can use the IP Filter Wizard to create multiple filters in an IPSec policy rule.


IPSec can now function through some Network Address Translation (NAT) infrastructures. As long as the version of NAT is compliant with the latest RFC and is configured to allow User Datagram Protocol (UDP) traffic, the Internet Key Exchange (IKE) protocol will detect the presence of NAT and use UDP-ESP encapsulation to allow the traffic to pass through.

Pearson IT Certification Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Pearson IT Certification and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Pearson IT Certification products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.pearsonitcertification.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020