Home > Articles > CompTIA > A+

This chapter is from the book

Memory Pages

The CPU sends data to memory in order to empty its registers and make room for more calculations. In other words, the CPU has some information it wants to get rid of, and sends that information out to the memory controller. The memory controller shoves it into whichever capacitors are available and keeps track of where it put everything. Each bit is assigned a memory address for as long as the controller is in charge of it (no pun intended).

When the CPU wants to empty a register, it waits for one of its internal electrical pulses (processor clock tick). When the pulse arrives, it sends out a data bit, usually to a memory cache. Very quickly, a stream of bits generates bytes in multiples of eight (8-bit byte, 16-bit bytes, and so on). The cache waits for the slower pulses of the motherboard clock, and then sends each bit over to the memory controller. The controller then directs each electrical charge into a memory cell. The cell might be a capacitor, in which case it has to be recharged. Or, it might be a transistor, in which case a switch opens or closes. Regardless of how wide a register or an address is, each bit ends up in its own cell, somewhere in the memory chip.

Page Ranges

Typically, memory is divided into blocks. At the main memory level, a block of memory is referred to as a memory page. A page is a related group of bytes (and their bits). It can vary in size from 512 bits to several kilobytes, depending on the way the operating system is set up. Understand that physical memory is fixed, with the amount of memory identified in the BIOS. However, the operating system dictates much of how the memory is being used. For example, a 32-bit operating system will structure memory pages in multiples of thirty-two bits; a 64-bit operating system will use pages that are multiples of sixty-four.

DRAM cells are usually accessed through paging. The controller keeps track of the electrical charges, their location, and the state (condition) of each capacitor and/or transistors of each memory chip. This combination of states and locations is the actual address.

Pages are similar to named ranges in a spreadsheet. Without ranges, a spreadsheet formula must include every necessary cell in a calculation. We might have a formula something like =SUM(A1+B1+C1+D1+E1). Now suppose we assign cells C1, D1, and E1 to a range, and call that range "LastWeek." We can now change the formula to include the range name: =SUM(A1+B1+"LastWeek"). The range name includes a set of cells.

A named range is analogous to the memory controller giving a unique name to part of a row of charges. This range of charges is called a page address. A memory page is some part of a row in a grid. A page address means that the controller doesn't have to go looking for every single capacitor or transistor containing particular data bits.

Do you remember that cheap little printing toy we talked about earlier—the one with the rubber letters and the rail? One way to think of memory addressing is as if we were trying to locate every single piece of rubber in the rail. The memory controller has to ask, "Get me letter 1, at the left end. Now get me letter 2, next to letter 1. Now get me letter 3, the third one in from the left," and so on. But suppose we don't worry about each letter, and think instead of the whole rail. Now the controller has only to ask, "Get me everything in the rail right now." This is more like memory paging.

Burst Mode

A burst of information is when a sub-system stores up pieces of information, and then sends them all out at once. Back in World War II, submarines were at risk every time they surfaced to send radio messages to headquarters. To reduce the time on the surface, people would record a message at a slow speed, and then play it back during the transmission in a single high-speed burst. To anyone listening, the message would sound like a quick stream of unintelligible noise.

"Bursting" is a rapid data-transfer technique that automatically generates a series of consecutive addresses every time the processor requests only a single address. In other words, although the processor is asking for only one address, bursting creates a block of more than that one. The assumption is that the additional addresses will be located adjacent to the previous data in the same row. Bursting can be applied both to read operations (from memory) and write operations (to memory).

On a system bus, burst mode is more like taking control of the phone line and not allowing anyone else to interrupt until the end of the conversation. However, memory systems use burst mode to mean something more like caching: The next-expected information is prepared before the CPU actually makes a request. Neither process is really a burst, but rather an uninterrupted transmission of information. Setting aside the semantics, burst mode takes place for only limited amounts of time, because otherwise no other sub-systems would be able to request an interruption.

Fast Page Mode (FPM)

Dynamic RAM originally began with Fast Page Mode (FPM), back in the late 1980s. Even now, many technical references refer to FPM DRAM or EDO memory (discussed next). In many situations, the CPU transfers data back and forth between memory, in bursts of consecutive addresses. Fast page mode simplifies the process by providing an automatic column counter. Keep in mind that addresses are held in a matrix, and that a given row is a page of memory. Each bit in the page also has a row-column number (address).

In plain DRAM, the controller not only had to find a row of bits (the page), it also had to go up and "manually" look at each column heading. Fast Page Mode automatically increments the column address, when the controller selects a memory page. It can then access the next cell without having to go get another column address. The controller uses fast page mode to make an assumption that the data read/write following a CPU request will be in the next three columns of the page row. This is somewhat like having a line of letters all ready to go in the toy stamp.

Using FPM, the controller doesn't have to waste time looking for a range address for at least three more times: It can read-assume-assume-assume. The three assumptions are burst cycles. The process saves time, and increases speed when reading or writing bursts of data.


Fast Page Mode is capable of processing commands at up to 50 ns. Fifty nanoseconds is fifty billionths of a second, which used to be considered very fast. Remember that the controller first moves to a row, then to a column, then retrieves the information. The row and column number is a matrix address.

The Data Output Buffer

Suppose the CPU wants back 16 bits of data (two bytes). Figure 3.6 illustrates what happens next. Note that the controller has stored the data in what it calls Page 12, in the cell range 1–16. It passes through the memory chip, looking for Page 12, bit 1 (Cell A12). It then moves each bit into the data output buffer cell at the top of each column. Remember: The controller doesn't have to look again at the page number for bits number 2, 3, or 4. It's already read "page 12," and assumes-assumes-assumes. For the fifth bit, it quickly re-reads the page address, and then goes and gets bits 5, 6, 7, and 8. Notice that in two reads, the controller has picked up one byte: half of a 16-bit address.

After the controller completes its pass through the entire page (four reads: one complete number), it validates the information and hands it back to the CPU. The controller then turns off the data output buffer (above the columns, in Figure 3.6). This takes approximately 10 nanoseconds. Finally, each cell in the page is prepared for the next transmission from the CPU. The memory enters a 10 ns wait state while the capacitors are pre-charged for the next cycle. In other words, that part of the row is given a zero charge (wiped out) and prepared for the next transmission.

Figure 3.6Figure 3.6 Memory controller retrieves cell data.


Understand that FPM has a 20 ns wait state: 10 ns to turn off the data output buffer, plus 10 ns to recharge specific cells in a page.

Extended Data Output (EDO) RAM

FPM evolved into Extended Data Out (EDO) memory. The big improvement in EDO was that column cell addresses were merely deactivated, not wiped out. The data remained valid until the next call from the CPU. In other words, Fast Page Mode deactivated the data output buffer (10 ns), and then removed the data bits in the column cells (10 ns). EDO, on the other hand, kept the data output buffer active until the beginning of the next cycle, leaving the data bits alone. One less step means a faster process.

EDO memory is sometimes referred to as hyper-page mode, and allows a timing overlap between successive read/writes. Remember that the data output buffers aren't turned off when the memory controller finishes reading a page. Instead, the CPU (not the memory controller) determines the start of the deactivation process by sending a new request. The result of this overlap in the process is that EDO eliminates 10 ns per cycle delay of fast page mode, generating faster throughput.

Here's another way to look at it. When you delete a file, the operating system has two ways to go about the process. It can either write a series of zeroes over every bit of data pertaining to that file, everywhere they exist, or it can simply cancel the FAT index reference. Obviously it's a lot faster to just cancel the first letter of the file's index name than it is to spend time cleaning out every data bit. Utility software applications allow you to "undelete" a file by resetting the first letter of a recoverable file. These applications also provide a way to wipe out a disk by writing all zeros to the file area. In the latter case, nobody can recover the information. FPM is like writing all zeros to a disk, and EDO is like changing only the first letter of the index name.

Both FPM and EDO memory are asynchronous. (In the English language, the "a" in front of synchronous is called a prefix. The "a" prefix generally means "not," or "the opposite.") In asynchronous memory, the memory controller is not working with any other clocks. DRAM is asynchronous memory. In asynchronous mode, the CPU and memory controller have to wait for each other to be ready before they can transfer data.

Pearson IT Certification Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Pearson IT Certification and its family of brands. I can unsubscribe at any time.


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Pearson IT Certification products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information

To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.


Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.


If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information

Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.


This site is not directed to children under the age of 13.


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information

If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.pearsonitcertification.com/u.aspx.

Sale of Personal Information

Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents

California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure

Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact

Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice

We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020