Home > Articles

This chapter is from the book

8-2. IPv6 Addressing

It was previously mentioned that IPv6 uses a 128-bit address technique, as compared to IPv4’s 32-bit address structure. There is also a difference in the way the IP addresses are listed. IPv6 numbers are written in hexadecimal rather than dotted decimal, as with IPv4. For example, the following is an IPv6 address represented with 32 hexadecimal digits Note: 32 hex digits with 4 bits/hex digit = 128 bits):

  • 6789:ABCD:1234:EF98:7654:321F:EDCB:AF21

This is classified as a full IPv6 address. The full means that all 32 hexadecimal positions contain a value other than 0.

Why doesn’t IPv6 use the “dotted decimal” format of IPv4? The answer is it would take many decimal numbers to represent the IPv6 address. Each decimal number takes at least seven binary bits in ASCII (American Standard Code for Information Interchange) code. For example, the decimal equivalent of the first eight hexadecimal characters in the previous full IPv6 address is

  • 6789:ABCD = 103.137.171.205

The completed decimal equivalent number for the full IPv6 address is

  • 103.137.171.205.18.52.239.152.118.84.50.31.237.203.175.33

The equivalent decimal number is 42 characters in length. In fact, the decimal equivalent number could be 48 decimal numbers long.

In terms of bits, one 4 hex bit group requires 4 x 4 = 16 bits. Assuming that 8 bits are used to represent the decimal numbers, it will take 12 x 8 = 72 bits to express one hex bit group in a decimal format. There is a significant bit savings obtained by expressing the IPv6 address in a hexadecimal format.

IPv6 uses seven colons (:) as separators to group the 32 hex characters into 8 groups of four. Some IPv6 numbers will have a 0 within the address. In this case, IPv6 allows the number to be compressed to make it easier to write the number. The technique for doing this is called double-colon notation. For example, assume that an IPv6 number is as follows:

  • 6789:0000:0000:EF98:7654:321F:EDCB:AF21

Consecutive 0s can be dropped and a double-colon notation can be used as shown:

  • 6789::EF98:7654:321F:EDCB:AF21

Recovering the compressed number in double-colon notation simply requires that all numbers left of the double notation be entered beginning with the leftmost slot of the IPv6 address. Next, start with the numbers to the right of the double colon.

Begin with the rightmost slot of the IPv6 address slots and enter the numbers from right to left until the double colon is reached. Zeros are entered into any empty slots:

  • 6789 :0 :0 :EF98 :7654 :321F :EDCB :AF21

IPv4 numbers can be written in the new IPv6 form by writing the IPv4 number in hexadecimal and placing the number to the right of a double colon. Example 8-1 demonstrates how a dotted-decimal IP number can be converted to IPv6 hexadecimal.

Example 8-1. Convert the IPv4 address of 192.168.5.20 to an IPv6 hexadecimal address

Similar to IPv4 classless addresses, IPv6 addresses are fundamentally divided into a network portion followed by a host portion. The network portion is called the network prefix and the number of bits used is the prefix length. The prefix is represented with a slash followed by the prefix length. This is the same notation used to designate the CIDR in IPv4. For example, the IPv6 address of 2001:DB8:FEED:BEEF::12 has a 64-bits network prefix. It then can be represented as 2001:DB8:FEED:BEEF::12/64. However, the concept of a CIDR is not relevant in IPv6, because there is enough IP address space for everyone. So, in IPv6, the host portion of the address or what is called the interface identifier is always 64-bits in length. This automatically leaves 64 bits as the network prefix. In a typical IPv6 customer site, a network of /48 is usually allocated by IANA. This provides the site with 65,536 subnets, which is more than sufficient. This means that when a site is assigned a /48, the site is capable of having up to 65536 subnets and each subnet is capable of hosting more than 1.8x1019 IPv6 addresses.

There are three types of IPv6 addresses: unicast, multicast, and anycast. The unicast IPv6 address is used to identify a single network interface address and data packets are sent directly to the computer with the specified IPv6 address. There are several types of unicast addresses, including link-local addresses, global unicast addresses, and unique local addresses. Link-local addresses are designed to be used for and are limited to communications on the local link. Every IPv6 interface will have one link-local address.

Per RFC 4291, “IP Version6 Addressing Architecture,” the network prefix of link-local addresses, is defined as FE80::/10. Unique local unicast addresses are addresses for local use only, and they are similar to the private IP addresses used in IPv4. Unique local unicast addresses use the prefix of FD00::/8 and were designed to replace site-local addresses, which are being deprecated.

Global unicast addresses are equivalent to the public ip addresses in IPv4. They have unlimited scope, and they are routable on the Internet. IANA is responsible for allocating the IPv6 global unicast address space. Currently, the range of allocated IPv6 addresses starts from prefix 2000::/3.

IPv6 multicast addresses are defined for a group of networking devices. Data packets sent to a multicast address are sent to the entire group of networking devices such as a group of routers running the same routing protocol. Multicast addresses all start with the prefix FF00::/8. The next group of characters in the IPv6 multicast address (the second octet) are called the scope. The scope bits are used to identify which ISP should carry the data traffic.

The anycast IPv6 addresses might seem like a new type of address, but the concept was not new. Anycast addresses can be thought of as a cross between unicast and multicast addresses. While the unicast traffic sends information to one address and the multicast traffic sends information to every address in the group, the anycast traffic sends information to any one address of the group. The trick is which address of the group to send information to. The most logical and efficient answer is the nearest or the closet address. Similar to multicast where the nodes will join the multicast group, the anycast nodes share the same anycast address. The data will be sent to a node within the anycast group. This node is the nearest to the sender.

Actually, the anycast concept is used in the IPv4 environment today with the root DNS servers. There are 13 DNS root servers in the world, but the DNS query is only sent to one of those servers.

IPv6 addressing is being used in a limited number of network sites (e.g., the federal government); however, the Internet is still running IPv4 and will be for some time. But, there are transition strategies in place to help with the IPv4 to IPv6 transition.

One possible transition to IPv6 is called the 6to4 Prefix, which is essentially a technique that enables IPv6 sites to communicate over the IPv4 Internet. This requires the use of a 6to4 enabled router, which means that 6to4 tunneling has been enabled. This also requires the use of a 6to4 Relay router that forwards 6to4 data traffic to other 6to4 routers on the Internet.

Figure 8-3 illustrates the structure of the 6to4 prefix for hosts. The 32 bits of the IPv4 address fit into the first 48 bits of the IPv6 address.

Figure 8-3

Figure 8-3. The 6to4 prefix format

Note the following shown in Figure 8-3:

  • FP is the Format Prefix, which is made up of the higher order bits. The 001 indicates that this is a global unicast address. The current list of the IPv6 address allocation can be viewed at www.iana.org/assignments/ipv6-unicast-address-assignments. Currently, IANA allocates 2000::/3 as an IPv6 global pool. 2000 can be written in binary as 0010 0000 0000 0000. 001 is the 3 highest order bits, which correspond to the FP.
  • TLA ID (0x2002) are the top-level identifiers that are issued to local Internet registries. These IDs are administered by IANA (http://www.iana.org/). The TLA is used to identify the highest level in the routing hierarchy. The TLA ID is 13 bits long.
  • V4ADDR is the IPv4 address of the 6to4 endpoint and is 32 bits long.
  • SLA ID is the Site Level Aggregation Identifier that is used by individual organizations to identify subnets within their site. The SLA ID is 16 bits long.
  • Interface ID is the Link Level Host Identifier and is used to indicate an interface on a specific subnet. The interface ID is equivalent to the host IP address in IPv4.

The 6to4 prefix format enables IPv6 domains to communicate with each other even if they don’t have an IPv6 ISP. Additionally, IPv6 can be used within the intranet, but access to the Internet is still available. The 6to4 provides unicast IPv6 connectivity between IPv6 host and via the IPv4 Internet.

Pearson IT Certification Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from Pearson IT Certification and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about Pearson IT Certification products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites; develop new products and services; conduct educational research; and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by Adobe Press. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.pearsonitcertification.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020