

CCIE Routing and Switching

Certification Guide

Fourth Edition

- ✓ Master CCIE Routing and Switching 4.0 blueprint exam topics
- Assess your knowledge with chapter-opening quizzes
- ✓ Review key concepts with Exam Preparation Tasks
- ✓ Practice with realistic exam questions on the CD-ROM

Wendell Odom, CCIE[®] No. 1624 Rus Healy, CCIE No. 15025 Denise Donohue, CCIE No. 9566

CCIE Routing and Switching Certification Guide, Fourth Edition

Wendell Odom, CCIE No. 1624

Rus Healy, CCIE No. 15025

Denise Donohue, CCIE No. 9566

Copyright © 2010 Pearson Education, Inc.

Published by: Cisco Press 800 East 96th Street Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

First Printing November 2009

Library of Congress Cataloging-in-Publication Data

Odom, Wendell

CCIE routing and switching exam certification guide / Wendell Odom, Rus Healy, Denise Donohue. -- 4th ed.

p. cm.

Includes index.

ISBN-13: 978-1-58705-980-3 (hardcover w/cd)

ISBN-10: 1-58705-980-0 (hardcover w/cd) 1. Telecommunications engineers—Certification—Study guides. 2. Routing (Computer network management)—Examinations—Study guides. 3. Telecommunication—Switching systems—Examinations—Study guides. 4. Computer networks—Examinations—Study guides. 5. Internetworking (Telecommunication)—Examinations—Study guides. I. Healy, Rus. II. Donohue, Denise. III. Title.

QA76.3.B78475 2010 004.6—dc22

2009041604

ISBN-13: 978-1-58705-980-3 ISBN-10: 1-58705-980-0

Warning and Disclaimer

This book is designed to provide information about Cisco CCIE Routing and Switching Written Exam, No. 350-001. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an "as is" basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Corporate and Government Sales

Cisco Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact: **U.S. Corporate and Government Sales** 1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside of the U.S. please contact: **International Sales** 1-317-581-3793 international@pearsontechgroup.com

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Publisher: Paul Boger

Associate Publisher: Dave Dusthimer Cisco Representative: Erik Ullanderson

Cisco Press Program Manager: Anand Sundaram

Executive Editor: Brett Bartow

Managing Editor: Patrick Kanouse

Development Editor: Dayna Isley

Project Editor: Seth Kerney

Copy Editor: Keith Cline

Technical Editor(s): Maurilio Gorito, Narbik Kocharians

Editorial Assistant: Vanessa Evans Book Designer: Louisa Adair Composition: Mark Shirar Indexer: Tim Wright

Proofreader: Apostrophe Editing Services

Americas Headquarters Cisco Systems, Inc. Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Europe Headquarters Cisco Systems International BV Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0812R

Foreword

CCIE Routing and Switching Exam Certification Guide, Fourth Edition, is an excellent self-study resource for the CCIE Routing and Switching written exam. Passing this exam is the first step to attaining the valued CCIE Routing and Switching certification and qualifies candidates for the CCIE Routing and Switching lab exam.

Gaining certification in Cisco technology is key to the continuing educational development of today's networking professional. Through certification programs, Cisco validates the skills and expertise required to effectively manage the modern enterprise network.

Cisco Press Exam Certification Guides and preparation materials offer exceptional—and flexible—access to the knowledge and information required to stay current in your field of expertise or to gain new skills. Whether used as a supplement to more traditional training or as a primary source of learning, these materials offer users the information and knowledge validation required to gain new understanding and proficiencies.

Developed in conjunction with the Cisco certifications and training team, Cisco Press books are the only self-study books authorized by Cisco and offer students a series of exam practice tools and resource materials to help ensure that learners fully grasp the concepts and information presented.

Additional authorized Cisco instructor-led courses, e-learning, labs, and simulations are available exclusively from Cisco Learning Solutions Partners worldwide. To learn more, visit http://www.cisco.com/go/training.

I hope that you find these materials to be an enriching and useful part of your exam preparation.

Erik Ullanderson Manager, Global Certifications Learning@Cisco October 2007

Introduction

The Cisco Certified Internetwork Expert (CCIE) certification may be the most challenging and prestigious of all networking certifications. It has received numerous awards and certainly has built a reputation as one of the most difficult certifications to earn in all of the technology world. Having a CCIE certification opens doors professionally typically results in higher pay and looks great on a resume.

Cisco currently offers several CCIE certifications. This book covers the version 4.0 exam blueprint topics of the written exam for the CCIE Routing and Switching certification. The following list details the currently available CCIE certifications at the time of this book's publication; check http://www.cisco.com/go/ccie for the latest information. The certifications are listed in the order in which they were made available to the public:

- CCIE Routing and Switching
- CCIE Security
- CCIE Service Provider
- CCIE Voice
- CCIE Storage Networking
- CCIE Wireless

Each of the CCIE certifications requires the candidate to pass both a written exam and a one-day, hands-on lab exam. The written exam is intended to test your knowledge of theory, protocols, and configuration concepts that follow good design practices. The lab exam proves that you can configure and troubleshoot actual gear.

Why Should I Take the CCIE Routing and Switching Written Exam?

The first and most obvious reason to take the CCIE Routing and Switching written exam is that it is the first step toward obtaining the CCIE Routing and Switching certification. Also, you cannot schedule a CCIE lab exam until you pass the corresponding written exam. In short, if you want all the professional benefits of a CCIE Routing and Switching certification, you start by passing the written exam.

The benefits of getting a CCIE certification are varied, among which are the following:

- Better pay
- Career-advancement opportunities
- Applies to certain minimum requirements for Cisco Silver and Gold Channel Partners, as well as those seeking Master Specialization, making you more valuable to Channel Partners
- Better movement through the problem-resolution process when calling the Cisco TAC
- Prestige
- Credibility for consultants and customer engineers, including the use of the Cisco CCIE logo

The other big reason to take the CCIE Routing and Switching written exam is that it recertifies an individual's associate-, professional-, and expert-level Cisco certifications. In other words, passing any CCIE written exam recertifies that person's CCNA, CCNP, CCIP, CCSP, CCDP, and so on. (Recertification requirements do change, so please verify the requirements at http://www.cisco.com/go/certifications.)

CCIE Routing and Switching Written Exam 350-001

The CCIE Routing and Switching written exam, at the time of this writing, consists of a two-hour exam administered at a proctored exam facility affiliated with Pearson VUE (http://www.vue.com/cisco). The exam typically includes approximately 100 multiple-choice questions. No simulation questions are currently part of the written exam.

As with most exams, everyone wants to know what is on the exam. Cisco provides general guidance as to topics on the exam in the CCIE Routing and Switching written exam blueprint, the most recent copy of which can be accessed from http://www.cisco.com/go/ccie.

Cisco changes both the CCIE written and lab blueprints over time, but Cisco seldom, if ever, changes the exam numbers. (In contrast, Cisco changes the exam numbers of the associate- and professional-level certifications when it makes major changes to what is covered on those exams.) Instead of changing the exam number when a CCIE exam changes significantly, Cisco publishes a new exam blueprint. Cisco assigns the new blueprint a version number, much like a software version.

The CCIE Routing and Switching written exam blueprint 4.0, as of the time of publication, is listed in Table I-1. Table I-1 also lists the chapters that cover each topic.

 Table I-1
 CCIE Routing and Switching Written Exam Blueprint

Topics	Book Chapters
1.00 Implement Layer 2 Technologies	
1.10 Implement Spanning Tree Protocol (STP)	3
(a) 802.1d	3
(b) 802.1w	3
(c) 801.1s	3
(d) Loop guard	3
(e) Root guard	3
(f) Bridge protocol data unit (BPDU) guard	3
(g) Storm control	3
(h) Unicast flooding	3
(i) Port roles, failure propagation, and Loop Guard operation	3
1.20 Implement VLAN and VLAN Trunking Protocol (VTP)	2
1.30 Implement trunk and trunk protocols, EtherChannel, and load-balance	2

 Table I-1
 CCIE Routing and Switching Written Exam Blueprint (Continued)

Topics	Book Chapters
1.40 Implement Ethernet technologies	1
(a) Speed and duplex	1
(b) Ethernet, Fast Ethernet, and Gigabit Ethernet	1
(c) PPP over Ethernet (PPPoE)	2
1.50 Implement Switched Port Analyzer (SPAN), Remote Switched Port Analyzer (RSPAN), and flow control	1
1.60 Implement Frame Relay	15
(a) Local Management Interface (LMI)	15
(b) Traffic shaping	15
(c) Full mesh	15
(d) Hub and spoke	15
(e) Discard eligible (DE)	15
1.70 Implement High-Level Data Link Control (HDLC) and PPP	15
2.00 Implement IPv4	
2.10 Implement IP version 4 (IPv4) addressing, subnetting, and variable-length subnet masking (VLSM)	4
2.20 Implement IPv4 tunneling and Generic Routing Encapsulation (GRE)	6
2.30 Implement IPv4 RIP version 2 (RIPv2)	Е
2.40 Implement IPv4 Open Shortest Path First (OSPF)	8
(a) Standard OSPF areas	8
(b) Stub area	8
(c) Totally stubby area	8
(d) Not-so-stubby-area (NSSA)	8
(e) Totally NSSA	8
(f) Link-state advertisement (LSA) types	8
(g) Adjacency on a point-to-point and on a multi-access network	8
(h) OSPF graceful restart	8
2.50 Implement IPv4 Enhanced Interior Gateway Routing Protocol (EIGRP)	7
(a) Best path	7
(b) Loop-free paths	7
(c) EIGRP operations when alternate loop-free paths are available, and when they are not available	7

continues

 Table I-1
 CCIE Routing and Switching Written Exam Blueprint (Continued)

Topics	Book Chapters		
(d) EIGRP queries	7		
(e) Manual summarization and autosummarization	9		
(f) EIGRP stubs	7		
2.60 Implement IPv4 Border Gateway Protocol (BGP)	10		
(a) Next hop	10		
(b) Peering	10		
(c) Internal Border Gateway Protocol (IBGP) and External Border Gateway Protocol (EBGP)	10, 11		
2.70 Implement policy routing	6		
2.80 Implement Performance Routing (PfR) and Cisco Optimized Edge Routing (OER)	6		
2.90 Implement filtering, route redistribution, summarization, synchronization, attributes, and other advanced	9, 11		
3.00 Implement IPv6			
3.10 Implement IP version 6 (IPv6) addressing and different addressing types	20		
3.20 Implement IPv6 neighbor discovery	20		
3.30 Implement basic IPv6 functionality protocols			
3.40 Implement tunneling techniques	20		
3.50 Implement OSPF version 3 (OSPFv3)	20		
3.60 Implement EIGRP version 6 (EIGRPv6)	20		
3.70 Implement filtering and route redistribution	20		
4.00 Implement MPLS Layer 3 VPNs	19		
4.10 Implement Multiprotocol Label Switching (MPLS)	19		
4.20 Implement Layer 3 virtual private networks (VPNs) on provider edge (PE), provider (P), and customer edge (CE) routers	19		
4.30 Implement virtual routing and forwarding (VRF) and Multi-VRF Customer Edge (VRF-Lite)	19		
5.00 Implement IP Multicast			
5.10 Implement Protocol Independent Multicast (PIM) sparse mode	16, 17		
5.20 Implement Multicast Source Discovery Protocol (MSDP)	17		
5.30 Implement interdomain multicast routing	17		
5.40 Implement PIM Auto-Rendezvous Point (Auto-RP), unicast rendezvous point (RP), and bootstrap router (BSR)	17		

 Table I-1
 CCIE Routing and Switching Written Exam Blueprint (Continued)

Topics	Book Chapters		
5.50 Implement multicast tools, features, and source-specific multicast	17		
5.60 Implement IPv6 multicast, PIM, and related multicast protocols, such as Multicast Listener Discovery (MLD)	17		
6.00 Implement Network Security			
6.01 Implement access lists	18		
6.02 Implement Zone Based Firewall	18		
6.03 Implement Unicast Reverse Path Forwarding (uRPF)	18		
6.04 Implement IP Source Guard	18		
6.05 Implement authentication, authorization, and accounting (AAA) (configuring the AAA server is not required, only the client side (IOS) is configured)	18		
6.06 Implement Control Plane Policing (CoPP)	18		
6.07 Implement Cisco IOS Firewall	18		
6.08 Implement Cisco IOS Intrusion Prevention System (IPS)	18		
6.09 Implement Secure Shell (SSH)	18		
6.10 Implement 802.1x			
6.11 Implement NAT	18		
6.12 Implement routing protocol authentication	18		
6.13 Implement device access control	18		
6.14 Implement security features	18		
7.00 Implement Network Services			
7.10 Implement Hot Standby Router Protocol (HSRP)	5		
7.20 Implement Gateway Load Balancing Protocol (GLBP)	5		
7.30 Implement Virtual Router Redundancy Protocol (VRRP)	5		
7.40 Implement Network Time Protocol (NTP)	5		
7.50 Implement DHCP	5		
7.60 Implement Web Cache Communication Protocol (WCCP)	5		
8.00 Implement Quality of Service (QoS)			
8.10 Implement Modular QoS CLI (MQC)	12		
(a) Network-Based Application Recognition (NBAR)	12		
(b) Class-based weighted fair queuing (CBWFQ), modified deficit round robin (MDRR), and low latency queuing (LLQ)	13		
(c) Classification	12		

continues

 Table I-1
 CCIE Routing and Switching Written Exam Blueprint (Continued)

Topics	Book Chapters		
(d) Policing	14		
(e) Shaping	14		
(f) Marking	12		
(g) Weighted random early detection (WRED) and random early detection (RED)	13		
(h) Compression	15		
8.20 Implement Layer 2 QoS: weighted round robin (WRR), shaped round robin (SRR), and policies	13		
8.30 Implement link fragmentation and interleaving (LFI) for Frame Relay	15		
8.40 Implement generic traffic shaping	14		
8.50 Implement Resource Reservation Protocol (RSVP)	13		
8.60 Implement Cisco AutoQoS	12		
9.00 Troubleshoot a Network			
9.10 Troubleshoot complex Layer 2 network issues	3		
9.20 Troubleshoot complex Layer 3 network issues	9		
9.30 Troubleshoot a network in response to application problems	14		
9.40 Troubleshoot network services			
9.50 Troubleshoot network security	18		
10.00 Optimize the Network			
10.01 Implement syslog and local logging	5		
10.02 Implement IP Service Level Agreement SLA	5		
10.03 Implement NetFlow	5		
10.04 Implement SPAN, RSPAN, and router IP traffic export (RITE)	5		
10.05 Implement Simple Network Management Protocol (SNMP)	5		
10.06 Implement Cisco IOS Embedded Event Manager (EEM)	5		
10.07 Implement Remote Monitoring (RMON)	5		
10.08 Implement FTP	5		
10.09 Implement TFTP	5		
10.10 Implement TFTP server on router	5		
10.11 Implement Secure Copy Protocol (SCP)	5		
10.12 Implement HTTP and HTTPS	5		
10.13 Implement Telnet			

 Table I-1
 CCIE Routing and Switching Written Exam Blueprint (Continued)

Topics	Book Chapters	
11.00 Evaluate proposed changes to a Network		
11.01 Evaluate interoperability of proposed technologies against deployed technologies	N/A	
(a) Changes to routing protocol parameters	N/A	
(b) Migrate parts of a network to IPv6	N/A	
(c) Routing Protocol migration	N/A	
(d) Adding multicast support	N/A	
(e) Migrate spanning tree protocol	N/A	
(f) Evaluate impact of new traffic on existing QoS design		
11.02 Determine operational impact of proposed changes to an existing network	N/A	
(a) Downtime of network or portions of network	N/A	
(b) Performance degradation	N/A	
(c) Introducing security breaches	N/A	
11.03 Suggest Alternative solutions when incompatible changes are proposed to an existing network	N/A	
(a) Hardware/Software upgrades	N/A	
(b) Topology shifts	N/A	
(c) Reconfigurations	N/A	

Version 4.0 of the blueprint provides more detail than the earlier versions of the blueprint. It is also helpful to know what topics Cisco has removed from earlier blueprints, because it is also useful to know what not to study as well as what to study. The more significant topics removed from the last few versions of the CCIE R/S Written blueprints include the following:

- Version 2.0 (2005)—Cisco announced the removal of ISDN/DDR, IS-IS, ATM, and SONET; they also added wireless LANs
- **Version 3.0 (2007)**—The Version 3.0 blueprint showed the removal of wireless LANs, and added IPv6 and MPLS concepts.
- Version 4.0 (2009)—The Version 4.0 blueprint shows that no significant topics were removed.

The Version 4.0 blueprint adds many new topics compared to the Version 3.0 blueprint. The blueprint mentions around 20 new small topics. In addition, the blueprint wording has been changed to be more aligned with the other Cisco certifications, with many of the topics listing the word *configuration*. Notably, MPLS configuration has been added since

Version 3.0, with several of the small topics, ranging in one to three pages of coverage in the book, also now including some configuration discussion.

The Version 4.0 blueprint also now includes five troubleshooting topics, as listed in section 9.0 of the blueprint, and paraphrased as follows:

- LANs
- IP routing
- Application performance (QoS)
- Network services
- Security

The existence of specific topics for troubleshooting may be a bit confusing at first, because the CCIE lab also now contains a specific troubleshooting component. However, the prior versions of the CCIE written exam already included questions asked in the context of a broken network or misconfigured device. These new blueprint items simply formalize the idea that you should not only understand proper configuration, but be able to predict what will happen when problems occur.

Finally, the other big change between the Version 3.0 and Version 4.0 blueprint relates to section 11.0 of the blueprint. This new section might be better termed "Dealing with issues that arise in real life when networks change." Section 11.0, actually titled "Evaluate Proposed Changes to a Network," diverges from the usual convention of a list of specific technologies. Instead, section 11.0 lists topics about how engineers do their jobs. Specifically, these topics relate to issues that arise when implementing network technologies in an existing network—topics that can be well learned by doing a network engineering job, and questions that can be answered by applying the vast amount of information covered through the whole book. From one perspective, the whole book already covers the topics in this section, but there is no specific section of the printed book that addresses these topics.

To give you practice on these topics, and pull the topics together, Edition 4 of the *CCIE Routing and Switching Exam Certification Guide* includes a large set of CD questions that mirror the types of questions expected for part 11 of the Version 4.0 blueprint. By their very nature, these topics require the application of the knowledge listed throughout the book. This special section of questions provides a means to learn and practice these skills with a proportionally larger set of questions added specifically for this purpose.

These questions will be available to you in the practice test engine database, whether you take full exams or choose questions by category.

About the CCIE Routing and Switching Official Exam Certification Guide, Fourth Edition

This section provides a brief insight into the contents of the book, the major goals, and some of the book features that you will encounter when using this book.

Book Organization

This book contains nine major parts. The book places the longer and the more long-lived topics earlier in the book. For example, the most familiar topics, LAN switching and IPv4 routing, occupy the first three parts, and consume more than 400 pages of the book. QoS, which has been a part of the blueprint for a long times, follows as part IV.

Beyond the chapters in the nine major parts of the book, you will find several useful appendixes gathered in Part X.

Following is a description of each part's coverage:

■ Part I, "LAN Switching" (Chapters 1–3)

This part focuses on LAN Layer 2 features, specifically Ethernet (Chapter 1), VLANs and trunking (Chapter 2), and Spanning Tree Protocol (Chapter 3).

■ Part II, "IP" (Chapters 4–5)

This part is titled "IP" to match the blueprint, but it might be better titled "TCP/IP" because it covers details across the spectrum of the TCP/IP protocol stack. It includes IP addressing (Chapter 4) and IP services such as DHCP and ARP (Chapter 5).

■ Part III, "IP Routing" (Chapters 6–11)

This part covers some of the more important topics on the exam and is easily the largest part of the book. It covers Layer 3 forwarding concepts (Chapter 6), followed by two routing protocol chapters, one each about EIGRP and OSPF (Chapters 7 and 8, respectively). (Note that while RIP Version 2 is listed in the blueprint, its role is waning; therefore, that material exists in this book as CD-only Appendix E.) Following that, Chapter 9 covers route redistribution between IGPs. At the end, Chapter 10 hits the details of BGP, with Chapter 11 looking at BGP path attributes and how to influence BGP's choice of best path.

■ Part IV, "QoS" (Chapters 12–14)

This part covers the more popular QoS tools, including some MQC-based tools, as well as several older tools, particularly FRTS. The chapters include coverage of classification and marking (Chapter 12), queuing and congestion avoidance (Chapter 13), plus shaping, policing, and link efficiency (Chapter 14).

■ Part V, "Wide-Area Networks" (Chapter 15)

The WAN coverage has been shrinking over the last few revisions to the CCIE R&S written exam. Chapter 15 includes some brief coverage of PPP and Frame Relay. Note that the previous version (V3.0) and current version (V4.0) of the blueprint includes another WAN topic, MPLS, which is covered in Part VIII, Chapter 19.

■ Part VI, "IP Multicast" (Chapters 16–17)

Chapter 16 covers multicast on LANs, including IGMP and how hosts join multicast groups. Chapter 17 covers multicast WAN topics.

■ Part VII, "Security" (Chapter 18)

Given the CCIE tracks for both Security and Voice, Cisco has a small dilemma regarding whether to cover those topics on CCIE Routing and Switching, and if so, in how much detail. This part covers a variety of security topics appropriate for CCIE Routing and Switching, in a single chapter. This chapter focuses on switch and router security.

■ Part VIII, "MPLS" (Chapter 19)

As mentioned in the WAN section, the CCIE R&S exam's coverage of MPLS has been growing over the last two versions of the blueprint. This chapter focuses on enterprise-related topics such as core MPLS concepts and MPLS VPNs, including basic configuration.

■ Part IX, "IP Version 6" (Chapter 20)

Chapter 20 examines a wide variety of IPv6 topics, including addressing, routing protocols, redistribution, and coexistence.

■ Part X, "Appendixes"

Appendix A, "Answers to the 'Do I Know This Already?' Quizzes"

This appendix lists answers and explanations for the questions at the beginning of each chapter.

Appendix B, "Decimal to Binary Conversion Table"

This appendix lists the decimal values 0 through 255, with their binary equivalents.

Appendix C, "CCIE Routing and Switching Exam Updates: Version 1.0"

As of the first printing of the book, this appendix contains only a few words that reference the web page for this book at http://www.ciscopress.com/title/9781587059803. As the blueprint

evolves over time, the authors will post new materials at the website. Any future printings of the book will include the latest newly added materials in printed form inside Appendix C. If Cisco releases a major exam update, changes to the book will be available only in a new edition of the book and not on this site.

NOTE Appendixes D through H and the Glossary are in printable, PDF format on the CD.

(CD-only) Appendix D, "IP Addressing Practice"

This appendix lists several practice problems for IP subnetting and finding summary routes. The explanations to the answers use the shortcuts described in the book.

(CD-only) Appendix E, "RIP Version 2"

This appendix lists a copy of the RIP Version 2 chapter from the previous edition of this book.

(CD-only) Appendix F, "IGMP"

This short appendix contains background information on Internet Group Management Protocol (IGMP) that was in the previous edition's first multicast chapter. It is included in case the background information might be useful to some readers.

(CD-only) Appendix G, "Key Tables for CCIE Study"

This appendix lists the most important tables from the core chapters of the book. The tables have much of the content removed so that you can use them as an exercise. You can print the PDF and then fill in the table from memory, checking your answers against the completed tables in Appendix H.

(CD-only) Glossary

The Glossary contains the key terms listed in the book.

Book Features

The core chapters of this book have several features that help you make the best use of your time:

■ "Do I Know This Already?" Quizzes—Each chapter begins with a quiz that helps you to determine the amount of time you need to spend studying that chapter. If you score yourself strictly, and you miss only one question, you may want to skip the core

of the chapter and move on to the "Foundation Summary" section at the end of the chapter, which lets you review facts and spend time on other topics. If you miss more than one, you may want to spend some time reading the chapter or at least reading sections that cover topics about which you know you are weaker.

- **Foundation Topics**—These are the core sections of each chapter. They explain the protocols, concepts, and configuration for the topics in that chapter.
- Foundation Summary—The "Foundation Summary" section of this book departs from the typical features of the "Foundation Summary" section of other Cisco Press Exam Certification Guides. This section does not repeat any details from the "Foundation Topics" section; instead, it simply summarizes and lists facts related to the chapter but for which a longer or more detailed explanation is not warranted.
- **Key topics**—Throughout the "Foundation Topics" section, a Key Topic icon has been placed beside the most important areas for review. After reading a chapter, when doing your final preparation for the exam, take the time to flip through the chapters, looking for the Key Topic icons, and review those paragraphs, tables, figures, and lists.
- Fill In Key Tables from Memory—The more important tables from the chapters have been copied to PDF files available on the CD as Appendix G. The tables have most of the information removed. After printing these mostly empty tables, you can use them to improve your memory of the facts in the table by trying to fill them out. This tool should be useful for memorizing key facts. That same CD-only appendix contains the completed tables so you can check your work.
- CD-based practice exam—The companion CD contains multiple-choice questions and a testing engine. The CD includes 200 questions unique to the CD. As part of your final preparation, you should practice with these questions to help you get used to the exam-taking process, as well as help refine and prove your knowledge of the exam topics.
- Special question section for the "Implement Proposed Changes to a Network" section of the Blueprint—To provide practice and perspectives on these exam topics, a special section of questions has been developed to help you both prepare for these new types of questions.

- **Key terms and Glossary**—The more important terms mentioned in each chapter are listed at the end of each chapter under the heading "Definitions." The Glossary, found on the CD that comes with this book, lists all the terms from the chapters. When studying each chapter, you should review the key terms, and for those terms about which you are unsure of the definition, you can review the short definitions from the Glossary.
- **Further Reading**—Most chapters include a suggested set of books and websites for additional study on the same topics covered in that chapter. Often, these references will be useful tools for preparation for the CCIE Routing and Switching lab exam.

Virtual LANs and VLAN Trunking

This chapter continues with the coverage of some of the most fundamental and important LAN topics with coverage of VLANs and VLAN trunking. As usual, for those of you current in your knowledge of the topics in this chapter, review the items next to the Key Topic icons spread throughout the chapter, plus the "Foundation Summary" and "Memory Builders" sections at the end of the chapter.

"Do I Know This Already?" Quiz

Table 2-1 outlines the major headings in this chapter and the corresponding "Do I Know This Already?" quiz questions.

 Table 2-1
 "Do I Know This Already?" Foundation Topics Section-to-Question Mapping

Foundation Topics Section	Questions Covered in This Section	Score
Virtual LANs	1–2	
VLAN Trunking Protocol	3–5	
VLAN Trunking: ISL and 802.1Q	6–9	
Configuring PPPoE	10	
Total Score		

In order to best use this pre-chapter assessment, remember to score yourself strictly. You can find the answers in Appendix A, "Answers to the 'Do I Know This Already?" Quizzes."

- 1. Assume that VLAN 28 does not yet exist on Switch1. Which of the following commands, issued from any part of global configuration mode (reached with the **configure terminal** exec command) would cause the VLAN to be created?
 - a. vlan 28
 - b. vlan 28 name fred
 - c. switchport vlan 28
 - d. switchport access vlan 28
 - e. switchport access 28

- 2. Which of the following are the two primary motivations for using private VLANs?
 - a. Better LAN security
 - **b.** IP subnet conservation
 - c. Better consistency in VLAN configuration details
 - d. Reducing the impact of broadcasts on end-user devices
 - **e.** Reducing the unnecessary flow of frames to switches that do not have any ports in the VLAN to which the frame belongs
- **3.** Which of the following VLANs can be pruned by VTP on an 802.1Q trunk?
 - **a.** 1–1023
 - **b.** 1–1001
 - **c.** 2–1001
 - **d.** 1–1005
 - **e.** 2–1005
- 4. An existing switched network has ten switches, with Switch1 and Switch2 being the only VTP servers in the network. The other switches are all VTP clients and have successfully learned about the VLANs from the VTP servers. The only configured VTP parameter on all switches is the VTP domain name (Larry). The VTP revision number is 201. What happens when a new, already-running VTP client switch, named Switch11, with domain name Larry and revision number 301, connects via a trunk to any of the other ten switches?
 - **a.** No VLAN information changes; Switch11 ignores the VTP updates sent from the two existing VTP servers until the revision number reaches 302.
 - b. The original ten switches replace their old VLAN configuration with the configuration in Switch11.
 - **c.** Switch11 replaces its own VLAN configuration with the configuration sent to it by one of the original VTP servers.
 - **d.** Switch11 merges its existing VLAN database with the database learned from the VTP servers, because Switch11 had a higher revision number.

- 5. An existing switched network has ten switches, with Switch1 and Switch2 being the only VTP servers in the network. The other switches are all VTP clients, and have successfully learned about the VLANs from the VTP server. The only configured VTP parameter is the VTP domain name (Larry). The VTP revision number is 201. What happens when an alreadyrunning VTP server switch, named Switch11, with domain name Larry and revision number 301, connects via a trunk to any of the other ten switches?
 - **a.** No VLAN information changes; all VTP updates between the original VTP domain and the new switch are ignored.
 - b. The original ten switches replace their old VLAN configuration with the configuration in Switch11.
 - c. Switch11 replaces its old VLAN configuration with the configuration sent to it by one of the original VTP servers.
 - **d.** Switch11 merges its existing VLAN database with the database learned from the VTP servers, because Switch11 had a higher revision number.
 - e. None of the other answers is correct.
- 6. Assume that two brand-new Cisco switches were removed from their cardboard boxes. PC1 was attached to one switch, PC2 was attached to the other, and the two switches were connected with a cross-over cable. The switch connection dynamically formed an 802.1Q trunk. When PC1 sends a frame to PC2, how many additional bytes of header are added to the frame before it passes over the trunk?
 - **a**. 0
 - **b**. 4
 - **c.** 8
 - **d**. 26
- 7. Assume that two brand-new Cisco Catalyst 3550 switches were connected with a cross-over cable. Before attaching the cable, one switch interface was configured with the switchport trunk encapsulation dot1q, switchport mode trunk, and switchport nonegotiate subcommands. Which of the following must be configured on the other switch before trunking will work between the switches?
 - a. switchport trunk encapsulation dot1q
 - b. switchport mode trunk
 - c. switchport nonegotiate
 - d. No configuration is required.

- **8.** When configuring trunking on a Cisco router fa0/1 interface, under which configuration modes could the IP address associated with the native VLAN (VLAN 1 in this case) be configured?
 - a. Interface fa 0/1 configuration mode
 - **b.** Interface fa 0/1.1 configuration mode
 - c. Interface fa 0/1.2 configuration mode
 - d. None of the other answers is correct
- **9.** Which of the following is false about 802.1Q?
 - a. Encapsulates the entire frame inside an 802.1Q header and trailer
 - **b.** Supports the use of a native VLAN
 - c. Allows VTP to operate only on extended-range VLANs
 - d. Is chosen over ISL by DTP
- 10. Which command enables PPPoE on the outside Ethernet interface on a Cisco router?
 - a. pppoe enable
 - b. pppoe-client enable
 - c. pppoe-client dialer-pool-number
 - d. pppoe-client dialer-number

Foundation Topics

Virtual LANs

In an Ethernet LAN, a set of devices that receive a broadcast sent by any one of the devices in the same set is called a *broadcast domain*. On switches that have no concept of virtual LANs (VLAN), a switch simply forwards all broadcasts out all interfaces, except the interface on which it received the frame. As a result, all the interfaces on an individual switch are in the same broadcast domain. Also, if the switch connects to other switches and hubs, the interfaces on those switches and hubs are also in the same broadcast domain.

A *VLAN* is simply an administratively defined subset of switch ports that are in the same broadcast domain. Ports can be grouped into different VLANs on a single switch, and on multiple interconnected switches as well. By creating multiple VLANs, the switches create multiple broadcast domains. By doing so, a broadcast sent by a device in one VLAN is forwarded to the other devices in that same VLAN; however, the broadcast is not forwarded to devices in the other VLANs.

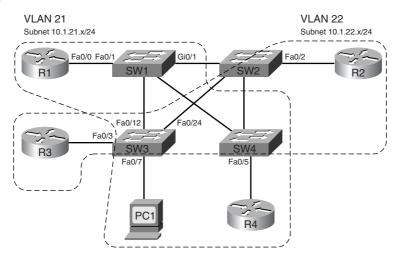
With VLANs and IP, best practices dictate a one-to-one relationship between VLANs and IP subnets. Simply put, the devices in a single VLAN are typically also in the same single IP subnet. Alternately, it is possible to put multiple subnets in one VLAN, and use secondary IP addresses on routers to route between the VLANs and subnets. Also, although not typically done, you can design a network to use one subnet on multiple VLANs, and use routers with proxy ARP enabled to forward traffic between hosts in those VLANs. (Private VLANs might be considered to consist of one subnet over multiple VLANs as well, as covered later in this chapter.) Ultimately, the CCIE written exams tend to focus more on the best use of technologies, so this book will assume that one subnet sits on one VLAN, unless otherwise stated.

Layer 2 switches forward frames between devices in the same VLAN, but they do not forward frames between two devices in different VLANs. To forward data between two VLANs, a multilayer switch (MLS) or router is needed. Chapter 6, "IP Forwarding (Routing)," covers the details of MLS.

VLAN Configuration

Configuring VLANs in a network of Cisco switches requires just a few simple steps:

- **Step 1** Create the VLAN itself.
- **Step 2** Associate the correct ports with that VLAN.


The challenge relates to how some background tasks differ depending on how the Cisco *VLAN Trunking Protocol (VTP)* is configured, and whether normal-range or extended-range VLANs are being used.

Using VLAN Database Mode to Create VLANs

To begin, consider Example 2-1, which shows some of the basic mechanics of VLAN creation in *VLAN database configuration mode*. VLAN database configuration mode allows the creation of VLANs, basic administrative settings for each VLAN, and verification of VTP configuration information. Only normal-range (VLANs 1–1005) VLANs can be configured in this mode, and the VLAN configuration is stored in a Flash file called vlan.dat.

Example 2-1 demonstrates VLAN database configuration mode, showing the configuration on Switch3 from Figure 2-1. The example shows VLANs 21 and 22 being created.

Figure 2-1 Simple Access and Distribution

Example 2-1 VLAN Creation in VLAN Database Mode–Switch3

! Below, note that FA $0/12$ and FA $0/2$	24 missing ⁻	from the list, because they have
! dynamically become trunks, support	ting multip	le VLANs.
Switch3# show vlan brief		
VLAN Name	Status	Ports
1 default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4
		Fa0/5, Fa0/6, Fa0/7, Fa0/8
		Fa0/9, Fa0/10, Fa0/11, Fa0/13
		Fa0/14, Fa0/15, Fa0/16, Fa0/17
		Fa0/18, Fa0/19, Fa0/20, Fa0/21
		Fa0/22, Fa0/23

Example 2-1 VLAN Creation in VLAN Database Mode–Switch3 (Continued)

```
! Below, "unsup" means that this 2950 switch does not support FDDI and TR
1002 fddi-default
                                      act/unsup
1003 token-ring-default
                                      act/unsup
1004 fddinet-default
                                      act/unsup
1005 trnet-default
                                      act/unsup
! Below, vlan database moves user to VLAN database configuration mode.
! The vlan 21 command defines the VLAN, as seen in the next command output
! (show current), VLAN 21 is not in the "current" VLAN list.
Switch3# vlan database
Switch3(vlan)# vlan 21
VLAN 21 added:
   Name: VLAN0021
! The show current command lists the VLANs available to the IOS when the switch
! is in VTP Server mode. The command lists the VLANs in numeric order, with
! VLAN 21 missing.
Switch3(vlan)# show current
 VLAN ISL Id: 1
   Name: default
   Media Type: Ethernet
   VLAN 802.10 Id: 100001
   State: Operational
   MTU: 1500
   Backup CRF Mode: Disabled
    Remote SPAN VLAN: No
 VLAN ISL Id: 1002
   Name: fddi-default
   Media Type: FDDI
   VLAN 802.10 Id: 101002
   State: Operational
   MTU: 1500
   Backup CRF Mode: Disabled
    Remote SPAN VLAN: No
! Lines omitted for brevity
! Next, note that show proposed lists VLAN 21. The vlan 21 command
! creates the definition, but it must be "applied" before it is "current".
Switch3(vlan)# show proposed
 VLAN ISL Id: 1
   Name: default
   Media Type: Ethernet
   VLAN 802.10 Id: 100001
   State: Operational
   MTU: 1500
   Backup CRF Mode: Disabled
    Remote SPAN VLAN: No
```

Example 2-1 VLAN Creation in VLAN Database Mode–Switch3 (Continued)

```
VLAN ISL Id: 21
   Name: VLAN0021
    Media Type: Ethernet
   VLAN 802.10 Id: 100021
    State: Operational
   MTU: 1500
   Backup CRF Mode: Disabled
    Remote SPAN VLAN: No
! Lines omitted for brevity
! Next, you could apply to complete the addition of VLAN 21,
! abort to not make the changes and exit VLAN database mode, or
! reset to not make the changes but stay in VLAN database mode.
Switch3(vlan)# ?
VLAN database editing buffer manipulation commands:
 abort Exit mode without applying the changes
 apply Apply current changes and bump revision number
 exit Apply changes, bump revision number, and exit mode
        Negate a command or set its defaults
 reset Abandon current changes and reread current database
        Show database information
 show
 vlan Add, delete, or modify values associated with a single VLAN
        Perform VTP administrative functions.
 vtp
! The apply command was used, making the addition of VLAN 21 complete.
Switch3(vlan)# apply
APPLY completed.
! A show current now would list VLAN 21.
Switch3(vlan)# vlan 22 name ccie-vlan-22
VLAN 22 added:
    Name: ccie-vlan-22
! Above and below, some variations on commands are shown, along with the
! creation of VLAN 22, with name ccie-vlan-22.
! Below, the vlan 22 option is used on show current and show proposed
! detailing the fact that the apply has not been done yet.
Switch3(vlan)# show current 22
VLAN 22 does not exist in current database
Switch3(vlan)# show proposed 22
 VLAN ISL Id: 22
! Lines omitted for brevity
! Finally, the user exits VLAN database mode using CTRL-Z, which does
! not inherently apply the change. CTRL-Z actually executes an abort.
Switch3(vlan)# ^Z
```

Using Configuration Mode to Put Interfaces into VLANs

To make a VLAN operational, the VLAN must be created, and then switch ports must be assigned to the VLAN. Example 2-2 shows how to associate the interfaces with the correct VLANs, once again on Switch3.

NOTE At the end of Example 2-1, VLAN 22 had not been successfully created. The assumption for Example 2-2 is that VLAN 22 has been successfully created.

Example 2-2 Assigning Interfaces to VLANs–Switch3

```
! First, the switchport access command assigns the VLAN numbers to the
! respective interfaces.
Switch3# confia t
Enter configuration commands, one per line. End with CNTL/Z.
Switch3(config)# int fa 0/3
Switch3(config-if)# switchport access vlan 22
Switch3(config-if)# int fa 0/7
Switch3(config-if)# switchport access vlan 21
Switch3(config-if)# ^Z
! Below, show vlan brief lists these same two interfaces as now being in
! VLANs 21 and 22, respectively.
Switch3# show vlan brief
VLAN Name
                                   Status
                                             Ports
.... .......
                                             Fa0/1, Fa0/2, Fa0/4, Fa0/5
  default
                                   active
                                             Fa0/6, Fa0/8, Fa0/9, Fa0/10
                                             Fa0/11, Fa0/13, Fa0/14, Fa0/15
                                             Fa0/16, Fa0/17, Fa0/18, Fa0/19
                                             Fa0/20, Fa0/21, Fa0/22, Fa0/23
21 VLAN0021
                                             Fa0/7
                                   active
22 ccie-vlan-22
                                            Fa0/3
                                   active
! Lines omitted for brevity
! While the VLAN configuration is not shown in the running-config at this point,
! the switchport access command that assigns the VLAN for the interface is in the
! configuration, as seen with the show run int fa 0/3 command.
Switch3# show run int fa 0/3
interface FastEthernet0/3
switchport access vlan 22
```

Using Configuration Mode to Create VLANs

At this point, the two new VLANs (21 and 22) have been created on Switch3, and the two interfaces are now in the correct VLANs. However, Cisco IOS switches support a different way to create VLANs, using configuration mode, as shown in Example 2-3.

Example 2-3 Creating VLANs in Configuration Mode–Switch3


```
! First, VLAN 31 did not exist when the switchport access vlan 31 command was ! issued. As a result, the switch both created the VLAN and put interface fa0/8 ! into that VLAN. Then, the vlan 32 global command was used to create a
```

continues

Example 2-3 Creating VLANs in Configuration Mode–Switch3 (Continued)

```
! VLAN from configuration mode, and the name subcommand was used to assign a
! non-default name.
Switch3# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch3(config)# int fa 0/8
Switch3(config-if)# switchport access vlan 31
% Access VLAN does not exist. Creating vlan 31
Switch3(config-if)# exit
Switch3(config)# vlan 32
Switch3(config-vlan)# name ccie-vlan-32
Switch3(config-vlan)# ^Z
Switch3# show vlan brief
VI AN Name
                                     Status Ports
    default
                                     active
                                               Fa0/1, Fa0/2, Fa0/4, Fa0/5
                                               Fa0/6, Fa0/9, Fa0/10, Fa0/11
                                               Fa0/13, Fa0/14, Fa0/15, Fa0/16
                                               Fa0/17, Fa0/18, Fa0/19, Fa0/20
                                               Fa0/21, Fa0/22, Fa0/23
21 VLAN0021
                                               Fa0/7
                                     active
22 ccie-vlan-22
                                               Fa0/3
                                     active
31 VLAN0031
                                               Fa0/8
                                     active
32 ccie-vlan-32
                                     active
! Portions omitted for brevity
```

Example 2-3 shows how the **switchport access vlan** subcommand creates the VLAN, as needed, and assigns the interface to that VLAN. Note that in Example 2-3, the **show vlan brief** output lists fa0/8 as being in VLAN 31. Because no ports have been assigned to VLAN 32 as of yet, the final line in Example 2-3 simply does not list any interfaces.

The VLAN creation process is simple but laborious in a large network. If many VLANs exist, and they exist on multiple switches, instead of manually configuring the VLANs on each switch, you can use VTP to distribute the VLAN configuration of a VLAN to the rest of the switches. VTP will be discussed after a brief discussion of private VLANs.

Private VLANs

Engineers may design VLANs with many goals in mind. In many cases today, devices end up in the same VLAN just based on the physical locations of the wiring drops. Security is another motivating factor in VLAN design: devices in different VLANs do not overhear each other's

broadcasts. Additionally, the separation of hosts into different VLANs and subnets requires an intervening router or multilayer switch between the subnets, and these types of devices typically provide more robust security features.

Regardless of the design motivations behind grouping devices into VLANs, good design practices typically call for the use of a single IP subnet per VLAN. In some cases, however, the need to increase security by separating devices into many small VLANs conflicts with the design goal of conserving the use of the available IP subnets. The Cisco private VLAN feature addresses this issue. Private VLANs allow a switch to separate ports as if they were on different VLANs, while consuming only a single subnet.

A common place to implement private VLANs is in the multitenant offerings of a service provider (SP). The SP can install a single router and a single switch. Then, the SP attaches devices from multiple customers to the switch. Private VLANs then allow the SP to use only a single subnet for the whole building, separating different customers' switch ports so that they cannot communicate directly, while supporting all customers with a single router and switch.

Conceptually, a private VLAN includes the following general characterizations of how ports communicate:

- Ports that need to communicate with all devices
- Ports that need to communicate with each other, and with shared devices, typically routers
- Ports that need to communicate only with shared devices

To support each category of allowed communications, a single private VLAN features a *primary VLAN* and one or more *secondary VLANs*. The ports in the primary VLAN are *promiscuous* in that they can send and receive frames with any other port, including ports assigned to secondary VLANs. Commonly accessed devices, such as routers and servers, are placed into the primary VLAN. Other ports, such as customer ports in the SP multitenant model, attach to one of the secondary VLANs.

Secondary VLANs are either *community VLANs* or *isolated VLANs*. The engineer picks the type based on whether the device is part of a set of ports that should be allowed to send frames back and forth (community VLAN ports), or whether the device port should not be allowed to talk to any other ports besides those on the primary VLAN (isolated VLAN). Table 2-2 summarizes the behavior of private VLAN communications between ports.

 Table 2-2
 Private VLAN Communications Between Ports

Description of Who Can Talk to Whom	Primary VLAN Ports	Community VLAN Ports ¹	Isolated VLAN Ports ¹
Talk to ports in primary VLAN (promiscuous ports)	Yes	Yes	Yes
Talk to ports in the same secondary VLAN (host ports)	N/A ²	Yes	No
Talks to ports in another secondary VLAN	N/A ²	No	No

¹Community and isolated VLANs are secondary VLANs.

VLAN Trunking Protocol

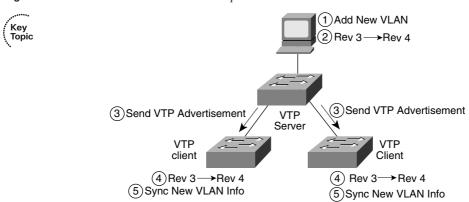
VTP advertises VLAN configuration information to neighboring switches so that the VLAN configuration can be made on one switch, with all the other switches in the network learning the VLAN information dynamically. VTP advertises the VLAN ID, VLAN name, and VLAN type for each VLAN. However, VTP does not advertise any information about which ports (interfaces) should be in each VLAN, so the configuration to associate a switch interface with a particular VLAN (using the **switchport access vlan** command) must still be configured on each individual switch. Also, the existence of the VLAN IDs used for private VLANs is advertised, but the rest of the detailed private VLAN configuration is not advertised by VTP.

Each Cisco switch uses one of three VTP modes, as outlined in Table 2-3.

Table 2-3 *VTP Modes and Features**

Function	Server Mode	Client Mode	Transparent Mode
Originates VTP advertisements	Yes	Yes	No
Processes received advertisements to update its VLAN configuration	Yes	Yes	No
Forwards received VTP advertisements	Yes	Yes	Yes
Saves VLAN configuration in NVRAM or vlan.dat	Yes	Yes	Yes
Can create, modify, or delete VLANs using configuration commands	Yes	No	Yes

^{*}CatOS switches support a fourth VTP mode (off), meaning that the switch does not create, listen to, or forward VTP updates.


²Promiscuous ports, by definition in the primary VLAN, can talk to all other ports.

VTP Process and Revision Numbers

The VTP update process begins when a switch administrator, from a VTP server switch, adds, deletes, or updates the configuration for a VLAN. When the new configuration occurs, the VTP server increments the old VTP *revision number* by 1, and advertises the entire VLAN configuration database along with the new revision number.

The VTP revision number concept allows switches to know when VLAN database changes have occurred. Upon receiving a VTP update, if the revision number in a received VTP update is larger than a switch's current revision number, it believes that there is a new version of the VLAN database. Figure 2-2 shows an example in which the old VTP revision number was 3, the server adds a new VLAN, incrementing the revision number to 4, and then propagates the VTP database to the other switches.

Figure 2-2 VTP Revision Number Basic Operation

Cisco switches default to use VTP server mode, but they do not start sending VTP updates until the switch has been configured with a VTP domain name. At that point, the server begins to send its VTP updates, with a different database and revision number each time its VLAN configuration changes. However, the VTP clients in Figure 2-2 actually do not have to have the VTP domain name configured. If not configured, the client will assume it should use the VTP domain name in the first received VTP update. However, the client does need one small bit of configuration, namely, the VTP mode, as configured with the **vtp mode** global configuration command.

VTP clients and servers alike will accept VTP updates from other VTP server switches. When using VTP, for better availability, a switched network using VTP needs at least two VTP server switches. Under normal operations, a VLAN change could be made on one server switch, and the other VTP server (plus all the clients) would learn about the changes to the VLAN database. Once learned, both VTP servers and clients store the VLAN configuration in their respective vlan.dat files in flash memory; they do not store the VLAN configuration in NVRAM.

With multiple VTP servers installed in a LAN, it is possible to accidentally overwrite the VTP configuration in the network. If trunks fail and then changes are made on more than one VTP server, the VTP configuration databases could differ, with different configuration revision numbers. When the formerly-separated parts of the LAN reconnect using trunks, the VTP database with a higher revision number is propagated throughout the VTP domain, replacing some switches' VTP databases. Note also that because VTP clients can actually originate VTP updates, under the right circumstances, a VTP client can update the VTP database on another VTP client or server. See http://www.ciscopress.com/1587201968 and look for downloads, to download a document that describes how a client could update the VLAN database on another VTP client or server. In summary, for a newly-connected VTP server or client to change another switch's VTP database, the following must be true:

- The new link connecting the new switch is trunking.
- The new switch has the same VTP domain name as the other switches.
- The new switch's revision number is larger than that of the existing switches.

■ The new switch must have the same password, if configured on the existing switches.

The revision number and VTP domain name can be easily seen with a Sniffer trace; to prevent DoS attacks with VTP, set VTP passwords, which are encoded as message digests (MD5) in the VTP updates. Also, some installations simply use VTP transparent mode on all switches, which prevents switches from ever listening to other switch VTP updates and erroneously deleting their VLAN configuration databases.

VTP Configuration

VTP sends updates out all active trunk interfaces (ISL or 802.1Q). However, with all default settings from Cisco, switches are in server mode, with no VTP domain name configured, and they do not send any VTP updates. Before any switches can learn VLAN information from another switch, at least one switch must have a bare-minimum VTP server configuration—specifically, a domain name.

Example 2-4 shows Switch3 configuring a VTP domain name to become a VTP server and advertise the VLANs it has configured. The example also lists several key VTP **show** commands. (Note that the example begins with VLANs 21 and 22 configured on Switch3, and all default settings for VTP on all four switches.)

Example 2-4 *VTP Configuration and* **show** *Command Example*

```
! First, Switch3 is configured with a VTP domain ID of CCIE-domain.
Switch3# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Switch3(config)# vtp domain CCIE-domain
Changing VTP domain name from NULL to CCIE-domain
Switch3(config)# ^Z
! Next, on Switch1, the VTP status shows the same revision as Switch3, and it
! learned the VTP domain name CCIE-domain. Note that Switch1 has no VTP-related
```

Example 2-4 VTP Configuration and **show** Command Example (Continued)

```
! configuration, so it is a VTP server; it learned the VTP domain name from.
! Switch3.
Switch1# sh vtp status
VTP Version
Configuration Revision : 2
Maximum VLANs supported locally: 1005
Number of existing VLANs : 7
VTP Operating Mode : Server
VTP Domain Name : CCIE-domain
VTP Pruning Mode : Disabled
VTP V2 Mode

VTP Traps Generation : Disabled

: 0x0E 0x07 0x9D 0x9A 0x27 0x10 0x6C 0x0B
Configuration last modified by 10.1.1.3 at 3-1-93 00:02:55
Local updater ID is 10.1.1.1 on interface V11 (lowest numbered VLAN interface found)
! The show vlan brief command lists the VLANs learned from Switch3.
Switch1# show vlan brief
VLAN Name
                                    Status
   default
                                             Fa0/1, Fa0/2, Fa0/3, Fa0/4
                                    active
                                             Fa0/5, Fa0/6, Fa0/7, Fa0/10
                                             Fa0/11, Fa0/13, Fa0/14, Fa0/15
                                             Fa0/16, Fa0/17, Fa0/18, Fa0/19
                                             Fa0/20, Fa0/21, Fa0/22, Fa0/23
                                             Gi0/2
21 VLAN0021
                                    active
22 ccie-vlan-22
                                    active
1002 fddi-default
                                    active
1003 token-ring-default
                                    active
1004 fddinet-default
                                    active
1005 trnet-default
                                    active
```

Example 2-4 shows examples of a few VTP configuration options. Table 2-4 provides a complete list, along with explanations.

 Table 2-4
 VTP Configuration Options

Option	Meaning
domain	Sends domain name in VTP updates. Received VTP update is ignored if it does not match a switch's domain name. One VTP domain name per switch is allowed.
password	Used to generate an MD5 hash that is included in VTP updates. Received VTP updates are ignored if the passwords on the sending and receiving switch do not match.
mode	Sets server, client, or transparent mode on the switch.

continues

 Option
 Meaning

 version
 Sets version 1 or 2. Servers and clients must match version to exchange VLAN configuration data. Transparent mode switches at version 2 forward version 1 or version 2 VTP updates.

 pruning
 Enables VTP pruning, which prevents flooding on a per-VLAN basis to switches that do not have any ports configured as members of that VLAN.

 interface
 Specifies the interface whose IP address is used to identify this switch in VTP updates.

 Table 2-4
 VTP Configuration Options (Continued)

Normal-Range and Extended-Range VLANs

Some VLAN numbers are considered to be *normal*, whereas some others are considered to be *extended*. Normal-range VLANs are VLANs 1–1005, and can be advertised via VTP versions 1 and 2. These VLANs can be configured in VLAN database mode, with the details being stored in the vlan.dat file in Flash.

Extended-range VLANs range from 1006–4094, inclusive. However, these additional VLANs cannot be configured in VLAN database mode, nor stored in the vlan.dat file, nor advertised via VTP. In fact, to configure them, the switch must be in VTP transparent mode. (Also, you should take care to avoid using VLANs 1006–1024 for compatibility with CatOS-based switches.)

Both ISL and 802.1Q support extended-range VLANs today. Originally, ISL began life only supporting normal-range VLANs, using only 10 of the 15 bits reserved in the ISL header to identify the VLAN ID. The later-defined 802.1Q used a 12-bit VLAN ID field, thereby allowing support of the extended range. Following that, Cisco changed ISL to use 12 of its reserved 15 bits in the VLAN ID field, thereby supporting the extended range.

Table 2-5 summarizes VLAN numbers and provides some additional notes.

 Table 2-5
 Valid VLAN Numbers, Normal and Extended

VLAN Number	Normal or Extended?	Can Be Advertised and Pruned by VTP Versions 1 and 2?	Comments
0	Reserved	_	Not available for use
1	Normal	No	On Cisco switches, the default VLAN for all access ports; cannot be deleted or changed
2–1001	Normal	Yes	

VLAN Number	Normal or Extended?	Can Be Advertised and Pruned by VTP Versions 1 and 2?	Comments
1002–1005	Normal	No	Defined specifically for use with FDDI and TR translational bridging
1006–4094	Extended	No	

 Table 2-5
 Valid VLAN Numbers, Normal and Extended (Continued)

Storing VLAN Configuration

Catalyst IOS stores VLAN and VTP configuration in one of two places—either in a Flash file called vlan.dat or in the running configuration. (Remember that the term "Catalyst IOS" refers to a switch that uses IOS, not the Catalyst OS, which is often called CatOS.) IOS chooses the storage location in part based on the VTP mode, and in part based on whether the VLANs are normal-range VLANs or extended-range VLANs. Table 2-6 describes what happens based on what configuration mode is used to configure the VLANs, the VTP mode, and the VLAN range. (Note that VTP clients also store the VLAN configuration in vlan.dat, and they do not understand extended range VLANs.)

 Table 2-6
 VLAN Configuration and Storage

Function	When in VTP Server Mode	When in VTP Transparent Mode
Normal-range VLANs can be configured from	Both VLAN database and configuration modes	Both VLAN database and configuration modes
Extended-range VLANs can be configured from	Nowhere—cannot be configured	Configuration mode only
VTP and normal-range VLAN configuration commands are stored in	vlan.dat in Flash	Both vlan.dat in Flash and running configuration ¹
Extended-range VLAN configuration commands stored in	Nowhere—extended range not allowed in VTP server mode	Running configuration only

¹When a switch reloads, if the VTP mode or domain name in the vlan.dat file and the startup-config file differ, the switch uses only the vlan.dat file's contents for VLAN configuration.

NOTE The configuration characteristics referenced in Table 2-6 do not include the interface configuration command **switchport access vlan**; it includes the commands that create a VLAN (**vlan** command) and VTP configuration commands.

Of particular interest for those of you stronger with CatOS configuration skills is that when you erase the startup-config file, and reload the Cisco IOS switch, you do not actually erase the

normal-range VLAN and VTP configuration information. To erase the VLAN and VTP configuration, you must use the **delete flash:vlan.dat** exec command. Also note that if multiple switches are in VTP server mode, if you delete vlan.dat on one switch and then reload it, as soon as the switch comes back up and brings up a trunk, it learns the old VLAN database via a VTP update from the other VTP server.

VLAN Trunking: ISL and 802.1Q

VLAN trunking allows switches, routers, and even PCs with the appropriate NICs to send traffic for multiple VLANs across a single link. In order to know to which VLAN a frame belongs, the sending switch, router, or PC adds a header to the original Ethernet frame, with that header having a field in which to place the VLAN ID of the associated VLAN. This section describes the protocol details for the two trunking protocols, followed by the details of how to configure trunking.

ISL and 802.1Q Concepts

If two devices are to perform trunking, they must agree to use either ISL or 802.1Q, because there are several differences between the two, as summarized in Table 2-7.

Table 2-7 Comparing ISL and 802.1Q

Feature	ISL	802.1Q
VLANs supported	Normal and extended range ¹	Normal and extended range
Protocol defined by	Cisco	IEEE
Encapsulates original frame or inserts tag	Encapsulates	Inserts tag
Supports native VLAN	No	Yes

¹ISL originally supported only normal-range VLANs, but was later improved to support extended-range VLANs as well.

ISL and 802.1Q differ in how they add a header to the Ethernet frame before sending it over a trunk. ISL adds a new 26-byte header, plus a new trailer (to allow for the new FCS value), encapsulating the original frame. This encapsulating header uses the source address (listed as SA in Figure 2-3) of the device doing the trunking, instead of the source MAC of the original frame. ISL uses a multicast destination address (listed as DA in Figure 2-3) of either 0100.0C00.0000 or 0300.0C00.0000.

802.1Q inserts a 4-byte header, called a tag, into the original frame (right after the Source Address field). The original frame's addresses are left intact. Normally, an Ethernet controller would expect to find either an Ethernet Type field or 802.3 Length field right after the Source Address field. With an 802.1Q tag, the first 2 bytes after the Address fields holds a registered Ethernet type value of 0x8100, which implies that the frame includes an 802.1Q header. Because 802.1Q does not actually encapsulate the original frame, it is often called *frame tagging*. Figure 2-3 shows the contents of the headers used by both ISL and 802.1Q.

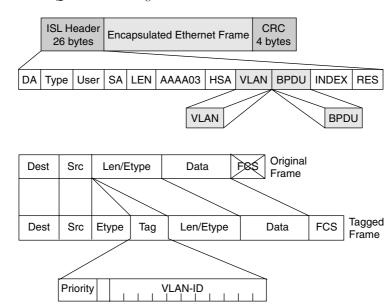


Figure 2-3 ISL and 802.1Q Frame Marking Methods

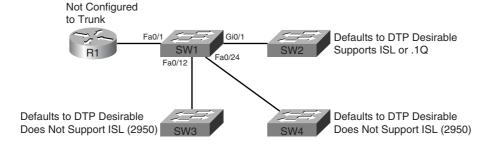
Key Topic

Finally, the last row from Table 2-7 refers to the *native VLAN*. 802.1Q does not tag frames sent inside the native VLAN. The native VLAN feature allows a switch to attempt to use 802.1Q trunking on an interface, but if the other device does not support trunking, the traffic for that one native VLAN can still be sent over the link. By default, the native VLAN is VLAN 1.

ISL and 802.1Q Configuration

Cisco switches use the *Dynamic Trunk Protocol (DTP)* to dynamically learn whether the device on the other end of the cable wants to perform trunking and, if so, which trunking protocol to use. DTP learns whether to trunk based on the DTP mode defined for an interface. Cisco switches default to use the DTP *desirable* mode, which means that the switch initiates sending DTP messages, hoping that the device on the other end of the segment replies with another DTP message. If a reply is received, DTP can detect whether both switches can trunk and, if so, which type of trunking to use. If both switches support both types of trunking, they choose to use ISL. (An upcoming section, "Trunk Configuration Compatibility," covers the different DTP modes and how they work.)

With the DTP mode set to desirable, switches can simply be connected, and they should dynamically form a trunk. You can, however, configure trunking details and verify the results with **show** commands. Table 2-8 lists some of the key Catalyst IOS commands related to trunking.


 Table 2-8
 VLAN Trunking-Related Commands

Command	Function
switchport no switchport	Toggle defining whether to treat the interface as a switch interface (switchport) or as a router interface (no switchport)
switchport mode	Sets DTP negotiation parameters
switchport trunk	Sets trunking parameters if the interface is trunking
switchport access	Sets nontrunking-related parameters if the interface is not trunking
show interface trunk	Summary of trunk-related information
show interface type number trunk	Lists trunking details for a particular interface
show interface type number switchport	Lists nontrunking details for a particular interface

Figure 2-4 lists several details regarding Switch1's trunking configuration and status, as shown in Example 2-5. R1 is not configured to trunk, so Switch1 will fail to negotiate trunking. Switch2 is a Catalyst 3550, which supports both ISL and 802.1Q, so they will negotiate trunking and use ISL. Switch3 and Switch4 are Catalyst 2950s, which support only 802.1Q; as a result, Switch1 negotiates trunking, but picks 802.1Q as the trunking protocol.

Figure 2-4 Trunking Configuration Reference for Example 2-5

Example 2-5 Trunking Configuration and **show** Command Example–Switch1

! The administrative mode of dynamic desirable (trunking) and negotiate (trunking) encapsulation) means that Switch1 attempted to negotiate to trunk, but the ! operational mode of static access means that trunking negotiation failed. ! The reference to "operational trunking encapsulation" of native means that ! no tagging occurs.

Example 2-5 Trunking Configuration and show Command Example—Switch1 (Continued)

```
Switch1# show int fa 0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative private-vlan host-association: none
Administrative private-vlan mapping: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Protected: false
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
Voice VLAN: none (Inactive)
Appliance trust: none
! Next, the show int gig 0/1 trunk command shows the configured mode
! (desirable), and the current status (N-ISL), meaning negotiated ISL. Note
! that the trunk supports the extended VLAN range as well.
Switch1# show int gig 0/1 trunk
Port Mode
                    Encapsulation Status Native vlan
Gi0/1 desirable n-isl
                                    trunking 1
Port
        Vlans allowed on trunk
        1-4094
Gi0/1
Port
        Vlans allowed and active in management domain
Gi0/1
         1,21-22
Port
         Vlans in spanning tree forwarding state and not pruned
         1,21-22
Gi0/1
! Next, Switch1 lists all three trunks - the segments connecting to the other
! three switches - along with the type of encapsulation.
Switch1# show int trunk
Port
         Mode
                Encapsulation Status
                                                Native vlan
Fa0/12 desirable n-802.1q
                                    trunking
Fa0/24 desirable n-802.1q
                                   trunking
                                                 1
        desirable n-isl
Gi0/1
                                   trunking
                                                 1
Port Vlans allowed on trunk
Fa0/12
        1 - 4094
```

Example 2-5 Trunking Configuration and **show** Command Example–Switch1 (Continued)

Fa0/24	1 - 4094
Gi0/1	1 - 4094
Port	Vlans allowed and active in management domain
Fa0/12	1,21-22
Fa0/24	1,21-22
Gi0/1	1,21-22
Port	Vlans in spanning tree forwarding state and not pruned
Fa0/12	1,21-22
Fa0/24	1,21-22
Gi0/1	1,21-22

Allowed, Active, and Pruned VLANs

Although a trunk can support VLANs 1–4094, several mechanisms reduce the actual number of VLANs whose traffic flows over the trunk. First, VLANs can be administratively forbidden from existing over the trunk using the **switchport trunk allowed** interface subcommand. Also, any allowed VLANs must be configured on the switch before they are considered active on the trunk. Finally, VTP can prune VLANs from the trunk, with the switch simply ceasing to forward frames from that VLAN over the trunk.

The **show interface trunk** command lists the VLANs that fall into each category, as shown in the last command in Example 2-5. The categories are summarized as follows:

- Allowed VLANs—Each trunk allows all VLANs by default. However, VLANs can be removed or added to the list of allowed VLANs by using the switchport trunk allowed command.
- Allowed and active—To be active, a VLAN must be in the allowed list for the trunk (based on trunk configuration), and the VLAN must exist in the VLAN configuration on the switch. With PVST+, an STP instance is actively running on this trunk for the VLANs in this list.
- **Active and not pruned**—This list is a subset of the "allowed and active" list, with any VTP-pruned VLANs removed.

Trunk Configuration Compatibility

In most production networks, switch trunks are configured using the same standard throughout the network. For instance, rather than allow DTP to negotiate trunking,, many engineers configure trunk interfaces to always trunk (**switchport mode trunk**) and disable DTP on ports that should not trunk. IOS includes several commands that impact whether a particular segment becomes a trunk. Because many enterprises use a typical standard, it is easy to forget the nuances of how the related commands work. This section covers those small details.

Two IOS configuration commands impact if and when two switches form a trunk. The **switchport mode** and **switchport nonegotiate** interface subcommands define whether DTP even attempts to negotiate a trunk, and what rules it uses when the attempt is made. Additionally, the settings on the switch ports on either side of the segment dictate whether a trunk forms or not.

Table 2-9 summarizes the trunk configuration options. The first column suggests the configuration on one switch, with the last column listing the configuration options on the other switch that would result in a working trunk between the two switches.

 Table 2-9
 Trunking Configuration Options That Lead to a Working Trunk

Configuration Command on One Side ¹	Short Name	Meaning	To Trunk, Other Side Must Be
switchport mode trunk	Trunk	Always trunks on this end; sends DTP to help other side choose to trunk	On, desirable, auto
switchport mode trunk; switchport nonegotiate	Nonegotiate	Always trunks on this end; does not send DTP messages (good when other switch is a non-Cisco switch)	On
switchport mode dynamic desirable	Desirable	Sends DTP messages, and trunks if negotiation succeeds	On, desirable, auto
switchport mode dynamic auto	Auto	Replies to DTP messages, and trunks if negotiation succeeds	On, desirable
switchport mode access	Access	Never trunks; sends DTP to help other side reach same conclusion	(Never trunks)
switchport mode access; switchport nonegotiate	Access (with nonegotiate)	Never trunks; does not send DTP messages	(Never trunks)

¹When the **switchport nonegotiate** command is not listed in the first column, the default (DTP negotiation is active) is assumed.

NOTE If an interface trunks, then the type of trunking (ISL or 802.1Q) is controlled by the setting on the **switchport trunk encapsulation** command. This command includes an option for dynamically negotiating the type (using DTP) or configuring one of the two types. See Example 2-5 for a sample of the syntax.

Configuring Trunking on Routers

VLAN trunking can be used on routers and hosts as well as on switches. However, routers do not support DTP, so you must manually configure them to support trunking. Additionally, you must manually configure a switch on the other end of the segment to trunk, because the router does not participate in DTP.

The majority of router trunking configurations use subinterfaces, with each subinterface being associated with one VLAN. The subinterface number does not have to match the VLAN ID; rather, the **encapsulation** command sits under each subinterface, with the associated VLAN ID being part of the **encapsulation** command. Also, because good design calls for one IP subnet per VLAN, if the router wants to forward IP packets between the VLANs, the router needs to have an IP address associated with each trunking subinterface.

You can configure 802.1Q native VLANs under a subinterface or under the physical interface on a router. If configured under a subinterface, you use the **encapsulation dot1q** *vlan-id* **native** subcommand, with the inclusion of the **native** keyword meaning that frames exiting this subinterface should not be tagged. As with other router trunking configurations, the associated IP address would be configured on that same subinterface. Alternately, if not configured on a subinterface, the router assumes that the native VLAN is associated with the physical interface; the associated IP address, however, would need to be configured under the physical interface.

Example 2-6 shows an example configuration for Router1 in Figure 2-1, both for ISL and 802.1Q. In this case, Router1 needs to forward packets between the subnets on VLANs 21 and 22. The first part of the example shows ISL configuration, with no native VLANs, and therefore only a subinterface being used for each VLAN. The second part of the example shows an alternative 802.1Q configuration, using the option of placing the native VLAN (VLAN 21) configuration on the physical interface.

Example 2-6 Trunking Configuration on Router1

```
! Note the subinterface on the fa 0/0 interface, with the encapsulation
! command noting the type of trunking, as well as the VLAN number. The
! subinterface does not have to be the VLAN ID. Also note the IP addresses for
! each interface, allowing Router1 to route between VLANs.
interface fastethernet 0/0.1
ip address 10.1.21.1 255.255.255.0
encapsulation isl 21
interface fastethernet 0/0.2
ip address 10.1.22.1 255.255.255.0
encapsulation isl 22
! Next, an alternative 802.1Q configuration is shown. Note that this 802.1Q configuration
! places the IP address
! for VLAN 21 on the physical interface; the router simply associates the
! physical interface with the native VLAN. Alternatively, a subinterface could be
! used, with the encapsulation dot1q 21 native command specifying that the router
! should treat this VLAN as the native VLAN.
interface fastethernet 0/0
 ip address 10.1.21.1 255.255.255.0
interface fastethernet 0/0.2
 ip address 10.1.22.1 255.255.255.0
 encapsulation dot1q 22
```


Note also that the router does not have an explicitly defined allowed VLAN list. However, the allowed VLAN list is implied based on the configured VLANs. For instance, in this example, Router1 allows VLAN 1 (because it cannot be deleted), VLAN 21, and VLAN 22. A **show interface trunk** command on Switch1 would show only 1, 21, and 22 as the allowed VLANs on FA0/1.

802.1Q-in-Q Tunneling

Traditionally, VLANs have not extended beyond the WAN boundary. VLANs in one campus extend to a WAN edge router, but VLAN protocols are not used on the WAN.

Today, several emerging alternatives exist for the passage of VLAN traffic across a WAN, including 802.1Q-in-Q, Ethernet over MPLS (EoMPLS), and VLAN MPLS (VMPLS). While these topics are more applicable to the CCIE Service Provider certification, you should at least know the concept of 802.1 Q-in-Q tunneling.

Also known as Q-in-Q or Layer 2 protocol tunneling, 802.1Q-in-Q allows an SP to preserve 802.1Q VLAN tags across a WAN service. By doing so, VLANs actually span multiple geographically dispersed sites. Figure 2-5 shows the basic idea.

Header

ID 100

SP: Key Customer1: VLAN 5 Topic Customer2: VLAN 6 **VLAN VLAN** Eth. Eth. Data Data Header ID 100 Header ID 100 Eth. **VLAN VLAN** Data Header ID₅ ID 100 C1-SW2 VLANs 100-199 SP-SW1 Eth. **VLAN VLAN** Data Header ID₆ **ID 100** VLANs 100-500 **VLAN VLAN** Eth Eth. Data Data

Figure 2-5 Q-in-Q: Basic Operation

Header

ID 100

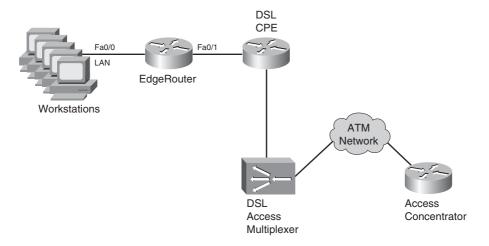
The ingress SP switch takes the 802.1Q frame, and then tags each frame entering the interface with an additional 802.1Q header. In this case, all of Customer1's frames are tagged as VLAN 5 as they pass over the WAN; Customer2's frames are tagged with VLAN 6. After removing the tag at egress, the customer switch sees the original 802.1Q frame, and can interpret the VLAN ID correctly. The receiving SP switch (SP-SW2 in this case) can keep the various customers' traffic separate based on the additional VLAN tags.

Using Q-in-Q, an SP can offer VLAN services, even when the customers use overlapping VLAN IDs. Customers get more flexibility for network design options, particularly with metro Ethernet services. Plus, CDP and VTP traffic passes transparently over the Q-in-Q service.

Configuring PPPoE

Although it might seem out of place in this chapter on VLANs and VLAN trunking, Point-to-Point Protocol over Ethernet (PPPoE) fits best here because it's an Ethernet encapsulation protocol. PPPoE is widely used for digital subscriber line (DSL) Internet access because the public telephone network uses ATM for its transport protocol; therefore, Ethernet frames must be encapsulated in a protocol supported over both Ethernet and ATM. PPP is the natural choice. The PPP Client feature permits a Cisco IOS router, rather than an endpoint host, to serve as the client in a network. This permits multiple hosts to connect over a single PPPoE connection.

In a DSL environment, PPP interface IP addresses are derived from an upstream DHCP server using IP Configuration Protocol (IPCP). Therefore, IP address negotiation must be enabled on the router's dialer interface. This is done using the **ip address negotiated** command in the dialer interface configuration.


Because of the 8-byte PPP header, the MTU for PPPoE is usually set to 1492 bytes so that the entire encapsulated frame fits within the 1500-byte Ethernet frame. A maximum transmission unit (MTU) mismatch prevents a PPPoE connection from coming up. Checking the MTU setting is a good first step when troubleshooting PPPoE connections.

Those familiar with ISDN BRI configuration will recognize the dialer interface configuration and related commands in Example 2-7. The key difference between ISDN BRI configuration and PPPoE is the **pppoe-client dial-pool-number** command.

Configuring an Ethernet edge router for PPPoE Client mode is the focus of this section. This task requires configuring the Ethernet interface (physical or subinterface) and a corresponding dialer interface. The information in this section applies to Cisco IOS Release 12.2(13)T and later, and 12.3 and 12.4 releases.

Figure 2-6 shows the topology. Example 2-7 shows the configuration steps. The first step is to configure the outside Ethernet interface as a PPPoE client and assign it a dialer interface number. The second step is to configure the corresponding dialer interface. Additional steps, including Network Address Translation (NAT) configuration, are also shown.

Figure 2-6 PPPoE Topology for Example 2-7

Example 2-7 Configuring PPPoE on EdgeRouter

```
EdgeRouter# conf t

EdgeRouter(config)# interface fa0/1

EdgeRouter(config-if)# ip address 192.168.100.1 255.255.255.0

EdgeRouter(config-if)# ip nat inside

EdgeRouter(config)# interface fa0/1

EdgeRouter(config-if)# pppoe-client dial-pool-number 1

EdgeRouter(config-if)# exit

EdgeRouter(config)# interface dialer1

EdgeRouter(config-if)# mtu 1492

EdgeRouter(config-if)# encapsulation ppp

EdgeRouter(config-if)# ip address negotiated

EdgeRouter(config-if)# ppp authentication chap

!The remaining CHAP commands have been omitted for brevity.

EdgeRouter(config-if)# ip nat outside

EdgeRouter(config-if)# dialer pool 1
```

continues

Example 2-7 Configuring PPPoE on EdgeRouter (Continued)

```
EdgeRouter(config-if)# dialer-group 1

EdgeRouter(config-if)# exit

EdgeRouter(config)# dialer-list 1 protocol ip permit

EdgeRouter(config)# ip nat inside source list 1 interface dialier1 overload

EdgeRouter(config)# access-list 1 permit 192.168.100.0 0.0.0.255

EdgeRouter(config)# ip route 0.0.0.0 0.0.0.0 dialer1
```

You can verify PPPoE connectivity using the command **show pppoe session**. Cisco IOS includes debug functionality for PPPoE through the **debug pppoe** [**data** | **errors** | **events** | **packets**] command.

Foundation Summary

This section lists additional details and facts to round out the coverage of the topics in this chapter. Unlike most of the Cisco Press *Exam Certification Guides*, this "Foundation Summary" does not repeat information presented in the "Foundation Topics" section of the chapter. Please take the time to read and study the details in the "Foundation Topics" section of the chapter, as well as review items noted with a Key Topic icon.

Table 2-10 lists some of the most popular IOS commands related to the topics in this chapter. (The command syntax was copied from the *Catalyst 3550 Multilayer Switch Command Reference, 12.1(20)EA2*. Note that some switch platforms may have differences in the command syntax.)

 Table 2-10
 Catalyst IOS Commands Related to Chapter 2

Command	Description
show mac address-table [aging-time count dynamic static] [address hw-addr] [interface interface-id] [vlan vlan-id]	Displays the MAC address table; the security option displays information about the restricted or static settings
show interfaces [interface-id vlan vlan-id] switchport trunk]	Displays detailed information about an interface operating as an access port or a trunk
show vlan [brief id vlan-id name vlan-name summary]	EXEC command that lists information about VLAN
show vlan [vlan]	Displays VLAN information
show vtp status	Lists VTP configuration and status information
switchport mode {access dot1q-tunnel dynamic {auto desirable} trunk}	Configuration command setting nontrunking (access), trunking, and dynamic trunking (auto and desirable) parameters
switchport nonegotiate	Interface subcommand that disables DTP messages; interface must be configured as trunk or access port
switchport trunk {allowed vlan vlan-list} {encapsulation {dot1q isl negotiate}} {native vlan vlan-id} {pruning vlan vlan-list}	Interface subcommand used to set parameters used when the port is trunking
switchport access vlan vlan-id	Interface subcommand that statically configures the interface as a member of that one VLAN

Table 2-11 lists the commands related to VLAN creation—both the VLAN database mode configuration commands (reached with the **vlan database** privileged mode command) and the normal configuration mode commands.

NOTE Some command parameters may not be listed in Table 2-11.

 Table 2-11
 Catalyst 3550 VLAN Database and Configuration Mode Command List

VLAN Database	Configuration
vtp {domain domain-name password password pruning v2-mode {server client transparent}}	<pre>vtp {domain domain-name file filename interface name mode {client server transparent} password password pruning version number}</pre>
vlan vlan-id [backupcrf {enable disable}] [mtu mtu-size] [name vlan-name] [parent parent-vlan-id] [state {suspend active}]	vlan vlan-id ¹
show {current proposed difference}	No equivalent
apply abort reset	No equivalent

¹Creates the VLAN and places the user in VLAN configuration mode, where commands matching the VLAN database mode options of the **vlan** command are used to set the same parameters.

 Table 2-12
 Cisco IOS PPPoE Client Commands

Command	Description
pppoe enable	Enables PPPoE operation on an Ethernet interface or subinterface
pppoe-client dial-pool-number number	Configures the outside Ethernet interface on a router for PPPoE operation and ties it to a dialer interface
debug pppoe [data errors events packets]	Enables debugging for PPPoE troubleshooting

Memory Builders

The CCIE Routing and Switching written exam, like all Cisco CCIE written exams, covers a fairly broad set of topics. This section provides some basic tools to help you exercise your memory about some of the broader topics covered in this chapter.

Fill In Key Tables from Memory

Appendix G, "Key Tables for CCIE Study," on the CD in the back of this book contains empty sets of some of the key summary tables in each chapter. Print Appendix G, refer to this chapter's tables in it, and fill in the tables from memory. Refer to Appendix H, "Solutions for Key Tables for CCIE Study," on the CD to check your answers.

Definitions

Next, take a few moments to write down the definitions for the following terms:

VLAN, broadcast domain, DTP, VTP pruning, 802.1Q, ISL, native VLAN, encapsulation, private VLAN, promiscuous port, community VLAN, isolated VLAN, 802.1Q-in-Q, Layer 2 protocol tunneling, PPPoE, DSL.

Refer to the glossary to check your answers.

Further Reading

The topics in this chapter tend to be covered in slightly more detail in CCNP Switching exam preparation books. For more details on these topics, refer to the Cisco Press CCNP preparation books found at www.ciscopress.com/ccnp.

Cisco LAN Switching, by Kennedy Clark and Kevin Hamilton, is an excellent reference for LAN-related topics in general, and certainly very useful for CCIE written and lab exam preparation.

Index

Numerics	active and not pruned VLANs, 52
10BASE2, 26	active routes (EIGRP), 231–233
10BASE5, 26	stuck-in-active state, 233–234
10BASE-T, 26	Active timer (EIGRP), 234
802.1Q trunking, 48–49	AD (administrative distance), 320–321
configuring, 49–51	preventing suboptimal routes, 332–337
PVST+, 75	adaptive shaping, 627
VLAN trunking, 48–49	configuring, 584
configuration, 49–50	enabling, 590
802.1Q-in-Q tunneling, 55–56	Frame Relay, 627
802.1X, 777–780	FRTS, 590
configuration, 779	adding
EAP, 777, 779–780	default routes to BGP, 391–392
802.2 LLC Type fields, 17	eBGP routes to IP routing tables, 402–403
J.F.	iBGP routes to IP routing tables, 404–419
_	multiple BGP routes to IP routing
A	tables, 460
AAA (authentication, authorization,	address family, 846
and accounting)	address formats, Ethernet, 16–17
authentication methods, 50–51, 761–763	Address Resolution Protocol. See ARP
CLI, 50, 760–761	addresses
groups of AAA servers, 764	Ethernet, 15–16
overriding defaults for login security,	inappropriate IP addresses, 790
764–765	MAC addresses
aaa authentication command, 763-764	mapping to multicast IP addresses,
aaa authentication ppp default, 765	656–657
abbreviating IPv6 addresses, 885	overriding, 17
ABRs (Area Border Routers), 270	tables, displaying, 59–60, 102,
stubby areas, 281	213, 811
access lists, statements, 52, 53, 786	multicast IP addresses, 652
access ports, protecting, 89	adjacencies, 221–224
ACEs (Access Control Entries), 785	adjacency tables, 822
IP ACL, 52–53, 785–787	ARP and inverse ARP, 188–189
ACLs	administrative scoping, 700
rate-limit ACL, 600	administrative weight, 466–467
IPv6, 903	advertising BGP routes to neighbors, 393
ACS (Cisco Secure Access Control Server), 760	BGP Update message, 393–394

determining contents of updates, 28–29,	manual summaries, BGP tables, 28
394–396	segment types, 441–443
impact of decision process and	shortest AS_PATH, 469–470
NEXT_HOP, 396–401	prepending and route aggregation,
AF (Assured Forwarding) PHB, 499	471–473
AF DSCPs, 499–500	removing private ASNs, 470
aggregatable global addresses, 886–887	AS_SET attribute, 449, 452, 455
aggregate-address command, 388–389,	ASBRs (Autonomous System Boundary
433, 472	Routers), 270
BGP route summarization, 439–440	ASNs (autonomous system numbers), 370,
aggregate-address suppress-map	442, 469–471, 654
command, 439	removing private ASNs
alignment errors, 93	AS (autonomous systems)
allocation of subnets, 119-120	multiple adjacent AS, 476
allow-default keyword, 789	single adjacent AS, 475
allowed VLANs, 52	Assert messages. PIM, 713–714
anycast IPv6 addresses, 891	as-set option, 389
Anycast RP with MSDP, 737–740	assigning
area authentication (OSPF), 22,	interfaces to VLANs, 39
299–300	IP addresses, DHCP, 148–150
Area Border Routers (ABRs), 270	IPv6 unicast addresses to router interface.
area filter-list, 295	888–889
area range command, 296	authentication, 50, 51, 761-763
area stub command, 282	802.1X, EAP, 777, 779–780
area virtual-link command, 300	configuring OSPF, 298–301
ARP (Address Resolution Protocol), 146–147,	EIGRP, 238–239
188–189	OSPFv3 unicast routing protocols, 918
DAI, 771	RIP, 17
gratuitous ARPs, 772	auto-cost reference-bandwidth, 292
AS_PATH attribute, 458	automatic 6to4 tunnels, 937-938
filtering BGP updates, 440–441	automatic medium-dependent interface
AS_PATH filters, 446–449	(Auto-MDIX), 8
AS_SET and AS_CONFED_SEQ, 449,	automatic summarization, EIGRP, 239
452, 455	Auto-MDIX (automatic medium-dependent
BGP AS_PATH and AS_PATH segment	interface crossover), 8
types, 441–443	autonegotiation, 8–10
matching AS_PATHs, 446–449	Autonomous System Boundary Routers
regular expressions, 443–444	(ASBRs), 270

AutoQoS	filtering updates based on NLRI, 434-437
for Enterprise, 522–523	route maps, 437
for VoIP, 520	soft reconfiguration, 438
on routers, 521–522	maximum-paths command, 481–482
on switches, 520–521	message types, 378–379
Auto-RP, 731-733	neighbor relationships, building, 371
autosummarization, RIP, 15-17	eBGP, 375–376
impact on redistributed routes and network	iBGP, 372–375
command, 385–387	ORIGIN path attribute, 392–393
auto-summary command, 388	PAs, 370, 420
aux, 764	policies, configuring, 462
,	resetting peer connections, 379–380
B	route maps, match and set commands, 489
В	route summarization, aggregate-address
BackboneFast, optimizing STP, 79, 81	command, 439–440
backdoor routes, IP routing tables, 403-404	routing table
bandwidth	impact of auto-summary on
CBWFQ, limiting, 538-541	redistributed routes and, 385–387
LLQ, 543-544	injecting routes/prefixes, 380
bandwidth command, 535, 538, 583	network command, 380–381, 383
bandwidth percent command, 539	redistributing from IGP, static or
bandwidth remaining percent command, 539	connected routes, 383–385
Bc (committed burst), 573, 41	RRs, 415–419
CB Policing defaults, 597	synchronization, 405-408
default value, calculating, 597	BGP COMMUNITY PA, 482–484
Be (excess burst), 573–574, 582	filtering NLRI using COMMUNITY
CB Policing defaults, 597	values, 489
default value, calculating, 597	matching with community lists, 484–485
traffic shaping, 574	removing COMMUNITY values,
BECN (Backward Explicit Congestion	485–486, 489
Notification), 576, 627	bgp confederation identifier command, 411
BGP (Border Gateway Protocol), 270	bgp deterministic-med command, 476
advertising routes to neighbors, 393	BGP routing policies, 427
BGP Update message, 393–394	BGP Update message, 371
determining contest of updates,	advertising BGP routes to neighbors,
394–396	393–394
impact of decision process and	determining contents of updates, 394–396
NEXT_HOP, 396–401	impact of decision process and
AS_PATH, 370	NEXT_HOP, 396-401
command references, 421, 489	bidirectional PIM, 742-743
confederations, 409–411	binary method
configuring, 411–414	exclusive summary routes, 124
decision process, 456–458	inclusive summary routes, 122-123
adding multiple BGP routes to IP	subnet numbers, determining all, 116-118
routing tables, 460	blocking transitioning to forwarding,
BGP PAs, 463–464, 466	STP, 73–74
mnemonics for memorizing, 460–462	Blocking state (Spanning Tree), 67, 74
tiebreakers, 458–460, 477	bogons, 790
filtering tools, 427, 433–434	BOOTP, 147-150

Border Gateway Protocol (BGP), 270	Carrier Sense Multiple Access with Collision
BPDU (bridge protocol data unit), 68, 76	Detection (CSMA/CD), 9
BPDU Guard, 89	Catalyst IOS commands, 27
enabling, 767	Category 5 wiring, 7–8
BR (Border Router), 208	CatOS, 42
bridge protocol data unit (BPDU), 68	CB Marking tool, 508-513
broadcast addresses, 15, 47	configuring, 508–516
determining	CoS and DSCP, 513–515
binary method, 112–113	locations for marking, 516–517
decimal method, 113–115	NBAR, 515–516
broadcast clients (NTP), 154	CB Policing, 567, 590-591
broadcast domains, 35	Bc, default value, 597
broadcast methods, 648	Be, default value, 597
broadcast subnets, 112	CAR, 599–601
BSR (BootStrap Router), 731, 735–736	command references, 608
buckets, refilling dual token buckets, 593	configuring, 595
burst size, 517	defaults for Bc and Be, 597
	multi-action policing, 598
^	policing by percentage, 599
C	policing subsets of traffic, 596
C&M (classification and marking) tools, 497	single-rate, three-color policing, 595
CB Marking, 508–516	dual-rate policing, configuring, 597
locations for marking, 516–517	multi-action policing, configuring, 597-598
CoS, 501	policing by percentage, configuring, 598
DSCP, 497–498	policing per class, 596
AF DSCPs, 499–500	single-rate, three-color policing, 592–596
CS DSCP values, 499	single-rate, two-color policing, 591–592
EF DSCPs, 500–501	two-rate, three-color policing, 593–594
IP Precedence, 497–498	CB Shaping, 567
locations for marking, 502–503	adaptive shaping, configuring, 584
MQC	based on bandwidth percent,
class maps, 505–507	configuring, 583
NBAR, 507–508	command references, 606
NBAR, 515–516	configuring, 578–580
policers, 517–518	LLQ, configuring, 580–582
policy routing, 519	to peak rates, configuring, 584
QoS pre-classification, 518	CBAC (Context-Based Access Control), 793
WAN marking fields, 501–502	configuring, 795
cabling standards, 28	protocol support, 794
calculating	CBT (Core-Based Tree), 697
metric, 227	CBWFQ, 535–538, 545
metrics for types 1 and 2, 279–280	bandwidth, 538–541
STP costs to determine RPs, 69	command references, 536
Tc, 574	configuring, 536–538
CAM (Content Addressable Memory), 658	features of, 536
updating, 72–73	CCP (Compression Control Protocol), 621
CAR (committed access rate), 567, 599–600	CDP (Cisco Discovery Protocol)
CB Policing, 599–601	disabling, 767
configuring, 601	for IPv6, 901–902

ceased updates (RIP), 11-13	MQC
CEF (Cisco Express Forwarding)	class maps, 505–506
adjacency table, 822	match commands, 524–525
ARP and inverse ARP, 188–189	classless interdomain routing. See CIDR, 125
FIB, 187, 822	classless IP addressing, 108, 111
Cell Loss Priority (CLP) bit, 501	classless routing, 194–195
CGMP (Cisco Group Management Protocol),	class-map command (MQC), 504
649, 672–676, 678	clear command, 380, 433
join message process, 675	clear ip cgmp, 678
leave message, 677	clear ip route command, 14
messages, 678	clearing
change notification, STP topology, 72–73	EIGRP routing table, 243
CIDR (classless interdomain routing),	OSPF processes, 290–292
125–126	CLI
CIR (committed information rate), 573, 41	AAA, 760–761
Cisco 3550 switches, 553	passwords, 757–758
egress queuing, 556	enable and username passwords,
Cisco 3560 switches	758–759
congestion avoidance, 555–556	client hardware address, DHCP, 776
egress queuing, 556–559	client mode (NTP), 154
Cisco 12000 series routers, MDRR,	CLP (Cell Loss Priority) bit, 501
550-552	collision domains, 9–10
Cisco Express Forwarding (CEF), 187	command references
Cisco IOS Embedded Event Manager,	CB Marking tool, 509
configuring, 167-169	BGP, 421, 489
Cisco IOS IP SLA, configuring, 163–165	CB Policing, 608
Cisco IOS IPS, 801–804	CB Shaping, 606
Cisco SAFE Blueprint document, 766	CBWFQ, 536
Layer 3 security, 783	EIGRP, 244–245
class maps, 505, 932	Frame Relay, 639
inspect, 796	FRTS, 606
MQC classification with, 505–507	IP ACL, 784
multiple match commands, 506–507	IP forwarding, 213
class maps (ZFW), configuring, 799	IP multicast routing, 746
Class of Service (CoS) field, 501	OSPF, 302–304
Class Selector (CS) PHBs, 499	redistribution, 361
class-default queues, 535	RIP, 19–20
classful IP addressing, 108	STP, 102
subnets, 109–110	synchronous serial links, 638
classful routing, 194–195	command references:
classification and marking tools, 493	commands
CB Marking, 510	aaa authentication, 763-764
CoS and DSCP, 514	aaa authentication ppp default, 765
locations for marking, 517	aggregate-address, 388–389, 433, 472
CoS (Class of Service) field, 501	BGP route summarization, 439–440
DSCP (Differentiated Services Code Point)	aggregate-address suppress-map, 439
field, 499, 501	area authentication, 299
field locations, 502–503	area filter-list, 295
MPLS Experimental (EXP) field, 502	area range command, 296

area stub, 282	ip ospf network, 263
area virtual-link, 300	ip pim dense-mode, 702
auto-cost reference-bandwidth, 292	ip pim rp-address, 730
auto-summary, 388	ip pim sparse-mode, 718
bandwidth, 535, 538, 583	ip pim spt-threshold, 727
bandwidth percent, 539	ip policy, 201
bandwidth remaining percent, 539	ip proxy-arp, 205
bgp always-compare-med, 476	ip verify source command, 777
bgp confederation identifier, 411	log-adjacency-changes detail, 290
bgp deterministic-med, 476	login authentication, 764
clear, 380, 433	match, 316–317
clear ip cgmp, 678	match as-path list-number, 449
clear ip route, 14	match ip address, 201
compress, 621	match length, 201
debug ip arp, 205	maximum-paths, 460, 480, 482
debug ip ospf adjacency, 299	BGP decision process tiebreakers,
debug ip policy, 205	476–477
debug ip routing, troubleshooting Layer 3	max-metric router-lsa on-startup
problems, 358–359	announce-time, 301
debug policy, 205	max-metric router-lsa on-startup
default-information originate,	wait-for-bgp, 301
345–346, 392	max-reserved-bandwidth, 538
DHCP snooping, 776	metric weights, 226
distance, 321, 404	MQC-related, 504
distance router, 334	neighbor, 264, 268, 478
distribute-list command, 293-294	neighbor default-originate, 392
do, 191	neighbor ebgp-multihop, 411, 479
eigrp stub, 236	neighbor filter-list command, 449
enable, 757	neighbor peer-group, 375
enable password, 758	neighbor remote-as, 375–376
enable secret, 758	neighbor route-map, 449
encapsulation, 54	neighbor shutdown, 379–380
encapsulation ppp, 615	neighbor weight, 466
frame-relay interface-dlci, 585	network, 292
frame-relay map, 192–193	injecting prefixes/routes into BGP
frame-relay mincir rate, 590	tables, 380–381, 383
ip access-group, 785	network backdoor, 404
ip bgp-community new-format, 484	no auto-summary, 380
ip cef global configuration, 188	no frame-relay inverse-arp, 193
ip classless, 195, 342	no ip classless, 195, 342
ip community-list, 484, 489	no ip directed-broadcast, 788
ip default-network, 346–347	no ip route-cache cef, 188
ip inspect sessions, 795	no synchronization, 405
ip multicast-routing, 702, 718	ospf auto-cost reference-bandwidth, 292
ip ospf area, 292	password, 757
ip ospf authentication, 298	ping, troubleshooting Layer 3
ip ospf cost, 292	problems, 357
ip ospf cost 50, 290	police, 595, 598
	police commands 597

policy-map queue-voip, 582	show ip ospf database, 275
port security configuration, 769	show ip ospf database summary link-id, 277
ppp authentication, 765	show ip ospf neighbor, 256
ppp multilink fragment-delay, 619	show ip ospf statistics, 277
ppp multilink interleave, 619	show ip protocols, troubleshooting Layer 3
prefix-list commands, 319	problems, 352–353
priority, 542	show ip route, 284
radius-server host, 764	show monitor session, 25
rate-limit, 599	spanning-tree portfast, 85
redistribute, 318	spanning-tree vlan, 79
redistribute command, 321–322	storm control, 780–781
redistribute connected, 468	summary-address, 342
redistribute ospf, 325	switchport access vlan, 42, 47
redistribute static, 344–345	switchport mode, 53
route-map, 314-316	switchport nonegotiate, 53
router bgp, 375, 411	switchport port-security maximum, 769
service password encryption, 758	switchport trunk allowed, 52
service password-encryption, 300, 759	switchport trunk encapsulation, 53
service-policy, 538	tacacs-server host, 764
service-policy out, 545	username password, 759
service-policy output, 538, 578	username, 761
service-policy output	committed information rate (CIR), 573, 41
policy-map-name, 583	Common Spanning Tree (CST), 75
set, 317	community lists, matching with
set as-path prepend command, 471	COMMUNITY, 484–485
set community none, 486	COMMUNITY PA
shape, 578, 580	BGP, 483–484
shape average, 584	filtering NLRI using COMMUNITY
shape peak mean-rate, 584	values, 489
shape percent, 583	matching with community lists,
show controllers, 94	484–485
show interface, 92–94	removing COMMUNITY values,
show interface trunk command, 52	485, 489
show ip, 27–28	community VLANs, 41
show ip arp, 205	companion website, retrieving exam
show ip bgp, 392, 449, 463–465	updates, 984
show ip bgp neighbor	comparing
advertised-routes, 398	IGMP versions, 3–4
show ip bgp neighbor neighbor-id	IP Precedence and DSCP, 497–498
advertised routes, 449	queuing tools, 534
show ip bgp neighbor neighbor-id received	complex SPAN configuration, 24
routes, 449	compress command, 621
show ip bgp regexp expression, 449	compression, PPP, 620
show ip eigrp neighbor, 225	header compression, 621–622
show ip eigrp topology, 228	layer 2 payload compression, 621
show ip interface, troubleshooting Layer 3	Compression Control Protocol (CCP), 621
problems, 353, 355	compression dictionaries, 632
show ip mroute, 702, 724	compression, Frame Relay payload
show ip ospf border-routers, 277	compression, 632–634

confederation eBGP peers, 409	HSRP, 151–152
confederations	HTTP, 172
BGP subcommands, 412	HTTPS, 172
configuring, 411–414	IPv6
IP routing tables, 409–411	EIGRP, 918–927
configuring, 411–414	multicast routing, 943
configuration mode	static routes, 904, 906
creating VLANs, 39-40	tunneling, 935–936
inserting interfaces into VLANs, 38-39	ISL, 49–51
configuring	MED
802.1Q, 49–51	multiple adjacent AS, 475–476
BGP confederations, 411–414	single adjacent AS, 475
CB Marking tool, 508–513	MLS, 197, 199–201
CoS and DSCP, 513–515	MPLS VPNs, 851–852
locations for marking, 516–517	IGP, 855–860
NBAR, 515–516	MP-BPG, 861–863
CB Policing, 595	VRF, 853–855
CAR, 601	MQC, 503–504
defaults for Bc and Be, 597	class maps, 505–507
dual-rate policing, 597	NBAR, 507–508
multi-action policing, 597–598	MST, 87
policing by percentage, 598–599	NBAR, 515–516
policing subsets of traffic, 596	NetFlow, 165–166
single-rate, three-color policing,	NTP, 154–155
595–596	OSPF, 288–290
CB Shaping, 578–580	alternatives to OSPF network
adaptive shaping, 584	command, 292
based on bandwidth percent, 583	authentication, 298–301
LLQ, 580–582	costs, 290–292
to peak rates, 584	over Frame Relay, 910
CBAC, 795	static route redistribution, 345–346
Cisco IP SLA, 163–165	stub router, 301
EIGRP, 234–237	virtual links, 296–298
authentication, 238–239	OSPFv3, 911–917
automatic summarization, 239	PfR, 209–211
offset lists, 242	PortChannels, 83–84
route filtering, 240–242	PPoE, 56–58
Embedded Event Manager, 167–169	QoS
FRTS, 584, 586	AutoQoS, 520–523
adaptive shaping, 590	MQC, 503–508
MQC-based, 590	pre-classification, 518
parameters, 587–588	queuing
setting parameters, 587–588	CBWFQ, 536–538
traffic-rate command, 586–587	LLQ, 541–543
with frame-relay traffic-rate	RADIUS server groups, 764
command, 586–587	RIP, 14
with LLQ, 588–589	authentication, 17
FTP, 170–171	autosummarization, 15–17
GRE tunnels, 212	next-hop features, 17–18

offset lists, 18	control plane (MPLS VPNs), 844-851
route filtering, 18	MP-BGP, 846–848
RITE, 166–167	MPLS IP forwarding, 829–839
RMON, 169–170	overlapping VPN support, 850–851
route maps with route-map command,	RTs, 848–850
314–316	VRF table, 844–846
route redistribution	converged steady-state (RIP), 7-9
default static routes, 344–345	convergence
mutual redistribution, 326–332	EIGRP, 228–229
with default settings, 322–325	converged steady-state, 7–9
route summarization, 339-340	going active, 231–233
RPVST+, 86	going active on routes, 231–233
RSPAN, 25	input events, 229
RSVP, 562	input events and local computation,
SCP, 171	229–231
single-rate, three color policing, 595-596	limiting query scope, 234
SPAN, 24	local computation, 230–231
SSH Access, 173	stuck-in-active, 233–234
SSH servers, 759–760	stuck-in-active state, 233–234
storm control, 781	RIP, 6–7
STP, 76–79	ceased updates, 11–13
switch ports, 11–13	poisoned routes, 9–11
Syslog, 159–160	steady-state operation, 7–9
TCP intercept, 792	timers, 11–14
Telnet, 172	triggered updates, 9–11
TFTP, 171	triggered updates and poisoned
trunking on routers, 53–55	routes, 9–11
unicast RPF, 900–901	tuning, 13–14
VLAN trunking on routers, 53–55	converging to STP topology, 71–72
VLANs, 35	converting binary to decimal, 979
storing, 47–48	CoPP (control plane policing),
VLAN database configuration mode,	804–808
36–38	Core-Based Tree (CBT), 697
VRF Lite, 873–875	CoS (Class of Service) field, 501
VTP, 44–46, 159	CB Marking tool, 513–515
WRED, 549–550	CRC errors, 93
ZFW, 797	creating VLANs with configuration mode,
class maps, 799	39–40
parameter maps, 799–800	cross-over cables, 8
policy maps, 800–801	CS (Class Selector) DSCP values, 499
zones, 798	CSMA/CD, 9
conforming packets, 591	CST (Common Spanning Tree), 75
congestion avoidance, 933	cut-through switches, 27
on Cisco 3560 switches, 555–556	
congestion	D
Frame Relay, 626	
adaptive shaping, FECN, and	DAD (Duplicate Address Detection), 898
BECN, 627	DAI (dynamic ARP inspection, 771–774
DE bit, 628	data plane

data plane (MPLS VPNs), 863-864	designated switches, 70
egress PE, 866–867	destination ports (SPAN/RSPAN),
ingress PE, 868–869	restrictions, 22–23
MPLS IP forwarding, 822–828	DHCP (Dynamic Host Configuration
PHP, 869	Protocol), 147–150, 902
VPN label, 865	DHCP snooping, 774–776
DD (Database Description, 258	DHCP snooping binding table, 774
DE (Discard Eligibility) bit, 501, 628, 44, 44	Differentiated Services Code Point (DSCP)
debug ip policy command, 205	field, 498–501
debug ip routing command, troubleshooting	DiffServ, RFCs, 526
Layer 3 issues, 358–359	Diffusing Update Algorithm (DUAL), 233
debug policy, 205	directed broadcasts, 788-789
decimal method	disabling
inclusive summary routes, 123-124	BGP synchronization, 408
subnet numbers, determining all, 118–119	CDP and DTP, 767
decimal to binary conversion table, 979–981	InARP, 193–194
deep packet inspection, 507	discard categories, WRED, 547
Deering, Dr. Steve, 646	Discard Eligibility (DE) bit, 501, 628
default Bc value, calculating, 597	discard logic (WRED), 547–548
default Be value, calculating, 597	discarding logic, 547
default routes, 342–343	discovering neighbors, hello messages,
adding to BGP, 391–392	257–258
creating with route summarization,	discretionary PAs, 456
347–348	discriminators, multi-exit discriminators, 47
default-information originate	distance command, 321, 404
command, 346	preventing suboptimal routes, 333
ip default-network command, 346–347	distance router command, 334
OSPF, redistribution, 344–346	distance vector protocols, RIP
default-information originate command,	converged steady-state, 7–9
345–346, 392	loop prevention, 6–7
deficits, MDRR, 551	poisoned routes, 9–11
dense-mode routing protocols, 694–695, 700	triggered updates, 9–11
DVMRP, 716	distribute lists versus prefix lists and route
MOSPF, 716	maps (BGP), 438–439
multicast forwarding, 694–695	distribute lists (RIP), 18
PIM-DM	distribute lists (KH1), 18 distribute-list command, 293–294
forming adjacencies with PIM hello	distribution list filtering, RIP, 18
messages, 701	distribution lists, 240–241
Graft messages, 711–712	divide-and-conquer troubleshooting
Prune messages, 711–712 Prune messages, 703–705	
9	approach, 350
reacting to failed links, 705–707	DIX Ethernet Version 2, 26 DLCI (Data Link Connection Identifier),
rules for pruning, 707–709 source-based distribution trees,	623–624
702–703	DMVPN, 809-810
steady-state operation and state refresh messages, 709–710	DNS for IPv6, 901 do command, 191
	The state of the s
deny clauses, route maps, 330	domains, broadcast domains, 35
designated ports, determining, 70–71	downstream routers, 707
designated routers, PIM, 715	drop probability bits, 501

DRs (designated routers), 260	limiting query scope, 234
on LANs	local computation, 230–231
election, 262–263	stuck-in-active state, 233–234
optimizing, 260–262	DUAL, 233
on WANs, 263	for IPv6, configuring, 918–927
OSPF network types, 263	going active, 231–233
DSCP (Differentiated Services Code Point)	Goodbye messages, 224
field, 497–501	Hellos, 221–224
AF DSCPs, 499–500	IGP, configuring between PE and CE,
CB Marking tool, 513–515	855–858
CS DSCP values, 499	IS-IS configuration for creating default
EF DSCPs, 500–501	summary routes, 348
DSCP-based WRED, 549	key chains, 238
DTP (Dynamic Trunk Protocol), 49	load balancing, 237
disabling, 767	metric, calculating, 227
DUAL (Diffusing Update Algorithm), 233	neighbors, 221–224
dual-rate policing, 597	offset lists, 242
duplex Ethernet, 8	packet types, 246
DVMRP (Distance Vector Multicast Routing	route filtering, 240–242
Protocol), 649, 697, 716	routing table, clearing, 243
DVMRP (Distance Vector Multicast Routing	split horizon, 240
Protocol)	static routes, redistribute static, 344
dynamic NAT, configuring, 131–134	stub routers, 234
	topology table, 226–228
E	updates, 224–226
-	electing
	root switches 6/_69
EAP (Extensible Authentication Protocol),	root switches, 67–69
778–780	DRs, 262–263
778–780 EAPoL (EAP over LAN), 778	DRs, 262–263 Embedded Event Manger, configuring,
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376	DRs, 262–263 Embedded Event Manger, configuring, 167–169
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224 authentication, 238–239	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54 encapsulation ppp command, 615
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224 authentication, 238–239 automatic summarization, 239	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54 encapsulation ppp command, 615 Enterprise AutoQoS, 522–523
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224 authentication, 238–239 automatic summarization, 239 command reference, 244–245	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54 encapsulation ppp command, 615 Enterprise AutoQoS, 522–523 EoMPLS (Ethernet over MPLS), 55
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224 authentication, 238–239 automatic summarization, 239	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54 encapsulation ppp command, 615 Enterprise AutoQoS, 522–523 EoMPLS (Ethernet over MPLS), 55 established keyword, 787
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224 authentication, 238–239 automatic summarization, 239 command reference, 244–245 configuration, 235–237	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54 encapsulation ppp command, 615 Enterprise AutoQoS, 522–523 EoMPLS (Ethernet over MPLS), 55
778–780 EAPoL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224 authentication, 238–239 automatic summarization, 239 command reference, 244–245 configuration, 235–237 configuring, 234–237	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54 encapsulation ppp command, 615 Enterprise AutoQoS, 522–523 EoMPLS (Ethernet over MPLS), 55 established keyword, 787 EtherChannels, troubleshooting, 98–99 Ethernet
FAPOL (EAP over LAN), 778 eBGP (external BGP), 372, 375–376 adding to IP routing tables, 402–403 over iBGP, 476 EF (Expedited Forwarding) DSCPs, 498–501 egress blocking, 572, 626 egress queuing on Cisco 3550 switches, 556 on Cisco 3560 switches, 557–559 EIGRP, 221, 17, 18 Active timer, 234 adjacencies, 221–224 authentication, 238–239 automatic summarization, 239 command reference, 244–245 configuration, 235–237 configuring, 234–237 convergence, 228–229	DRs, 262–263 Embedded Event Manger, configuring, 167–169 enable command, 757 enable password command, 758 enable secret command, 758 enabling Cisco IOS IPS, 802–804 Root Guard and BPDU Guard, 767 encapsulation Frame Relay, 625–626 GRE tunnels, 211–212 encapsulation command, 54 encapsulation ppp command, 615 Enterprise AutoQoS, 522–523 EoMPLS (Ethernet over MPLS), 55 established keyword, 787 EtherChannels, troubleshooting, 98–99

Category 5 wiring, 7–8	FIB (Forwarding Information Base), 187, 822
collision domains, 10	CEF, 187
cross-over cables, 8	MPLS IP forwarding, 825–826
CSMA/CD, 9	fields
duplex, 8	classification and marking tools
frames, 13	Cell Loss Priority (CLP) field, 501
header fields, 14	Class of Service (CoS) field, 501
multicast Ethernet frames, 15	Differentiated Services Code Point
packets, 13	(DSCP) field, 498–501
PPoE, configuring, 56, 58	Discard Eligibility (DE) field, 501
RJ-45 pinouts, 7–8	IP Precedence (IPP) field, 497–498
speed, 8	Type fields, 17
switch buffering, 9–10	FIFO (first-in, first-out), 533
switch port configuration, 11–13	filtering
twisted pairs, 7–8	BGP updates
Type fields, 17	AS_PATH filters, 446–449
types, 28	AS_SET and AS_CONFED_SEQ,
types of Ethernet, 26	449, 452
VLANs. See VLANs, 35	BGP AS_PATH and AS_PATH
Ethernet over MPLS (EoMPLS), 55	segment, 441–443
EUI-64 address format, 892–893	by matching AS_PATHs, 440–441
event logging, Syslog, 159–160	regular expressions, 443–444
exam updates, retrieving from companion	route maps, 437
website, 984	soft reconfiguration, 438
exceeding packets, 591	distribution list and prefix list filtering
excess burst size (Be), 573, 42	(RIP), 18
exclusive summary routes, 122–124	NLRI using COMMUNITY values, 489
EXP bit, 502	OSPF, 293
exponential weighting constant, 549	ABR LSA type 3 filtering, 295–296
extended-range VLANs, 46–47	distribute-list command, 293–294
Extensible Authentication Protocol. See EAP	subnets of summaries using aggregate-
Extensible Authentication 1 Totocoi. See EA1	address command, 439–440
	finding RPs, 730, 741
F	Anycast RP with MSDP, 737–739
failed links, reacting to, 705-707	Auto-RP, 731–733
Fast Link Pulses (FLP), 8	BSR, 735–736
fast switching, IP forwarding, 187	firewalls, ZFW, 796
FastE, 26	class maps, configuring, 799
fast-switching cache, 187	configuring, 797
FCS (frame check sequence), 186	parameter maps, 799–800
FD (feasible distance), 228	policy maps, 800–801
FDX (full duplex), 8	zones, configuring, 798
feasibility conditions, 229	flags, mroute, 49–50, 749
FEC (Forwarding Equivalence Class), 870,	flood (pacing), 305, 24
872, 54	flooding LSA headers to neighbors, 258
FECN (Forward Explicit Congestion	flow exporters, 165
Notification), 627	flow monitors, 165
FFRTS, configuring with frame-relay	flow samplers, 165
traffic-rate command, 586–587	FLP (Fast Link Pulses). 8

Flush timer (RIP), 12–14	with LLQ, 588–589
following, 584	with traffic-rate command, 587
ForeSight, 576	MQC-based, configuring, 590
Forward Explicit Congestion Notification.	FTP, configuring, 170–171
See FECN, 627	full drop, 547
forwarding (STP), transitioning from	full duplex (FDX), 8
blocking, 73–74	functions of CBWFQ, 536
Forwarding state (Spanning Tree), 74	
fraggle attacks, 789	
fragmentation, Frame Relay, 635	G
fragment-free switches, 27	gang of four, 622
frame check sequence (FCS), 186	GDA (Group Destination Address), 674
Frame Relay	GigE, 26
command reference, 639	GLBP (Gateway Load Balancing Protocol),
configuring, 628–632	150–153
congestion, handling, 626	global addressing, 624
adaptive traffic shaping, 627	global routing table, 842
DE bit, 628	GLOP addressing, multicast IP addresses, 654
DLCI, 623–624	going active, 231–233
fragmentation, 634–635	Goodbye messages (EIGRP), 224
FRF.12, configuring, 634–636	graft messages, PIM-DM, 711–712
headers, 626	gratuitous ARPs, 772
Inverse ARP, 189–194	GRE tunnels, 211–212
LFI, 634–637	Group Destination Address (GDA), 674
LMI, 624–625	group radius command, 763–764
payload compression, 632–634	group tacacs+ command, 763–764
static mapping configuration, 192–193	groups of AAA servers, 764
traffic shaping, 576	group-specific query messages, IGMPv2,
frame-relay fragment command, 635	666–669
frame-relay fragment size command, 634	GTS (Generic Traffic Shaping), 576–578
frame-relay interface-dlci command, 585	ors (deneric frame snaping), 570-570
frame-relay map commands, 192–193	
frame-relay mincir rate command, 590	Н
	half duplex (HDX), 8
frame-relay traffic-rate command, 586–587	hardware queues, 533
frames	HDLC (High-Level Data Link Control), 614
	HDX (half duplex), 8
Ethernet, 13	headers
multicast Ethernet, 15	Frame Relay, 625–626
FRF (Frame Relay Forum), 623	IP addresses, 137–138
FRF.12, configuring, 634–636	LSA headers, 259
FRF.9 (Frame Relay Forum Implementation Agreement 9), 632	MPLS, 826–828
9	header compression, PPP, 621–622
FRTS (Frame Relay Traffic Shaping),	hello intervals (EIGRP), 222
567, 584	
adaptive shaping, configuring, 590	hello messages discovering neighbors, 257–258
command references, 606	EIGRP, 221–224
configuring, 584, 586	forming adjacencies with PIM hello
parameters, 587–588	messages, 701
setting parameters, 587–588	messages, 701

Holddown timer (RIP), 13	IGMPv3, 670-671
host membership query functions, IGMPv1,	IGPs (Interior Gateway Protocols), 370
662–665	configuring between PE and CE,
host membership report functions,	855–858
IGMPv1, 663	redistribution, configuring between PE-CE
HSRP (Hot Standby Router Protocol),	IGP and MP-BGP, 858–860
150–153	implementing CoPP, 806–808
HTTP, configuring, 172	inappropriate IP addresses, 790
HTTPS, configuring, 172	InARP (Frame Relay Inverse ARP), 189–192
	disabling, 193–194
	inclusive summary routes, 121
	binary method, 122–123
IANA (Internet Assigned Numbers	decimal method, 123–124
Authority), 652	Individual/Group (I/G) bit, 16
iBGP, 372–375	Inform message, SNMP, 158
adding routes to IP routing tables, 404–406	ingress queuing, 553–555
BGP synchronization and	input events, 229
redistributing routes, 406–408	EIGRP, 229–231
confederations, 409–414	Inside Global addresses, 128
disabling BGP synchronization, 408	Inside Local addresses, 128
RRs, 414–419	inspect class map, 796
over eBGP, 476	intercept mode, TCP intercept, 792
ICMP port numbers, 786	interfaces, 535
ICMPv6, 899	assigning to VLANs, 39
IEEE 802.1D STP timers, 101	associating to VLANs, 38
IEEE 802.2, 26	queuing, 534
IEEE 802.3, 26	using configuration mode to put interfaces
IEEE 802.3ab, 26	into VLANs, 38–39
IEEE 802.3z, 26	versus subinterfaces and virtual circuits,
IGMP (Internet Group Management Protocol), 649	queuing, 534
comparing all versions, 3–4	internal processing, switches, 26
managing distribution of multicast traffic,	Internal Spanning Tree (IST), 88
657–659	internetworks, 110
IGMP snooping, 678–679, 681–683	interoperability, IGMPv1 and IGMPv2, 2–3
joining groups, 680	Inverse ARP, Frame Relay Inverse ARP, 189–192
RGMP, 684	IP
IGMPv1	ARP, 146–147
host membership query functions, 662–663	BOOTP, 147–150
host membership report functions,	command reference, 175–176
663–665	DHCP, 147–150
interoperability with IGMPv2, 2–3	GLBP, 150–153
timers, 669	HSRP, 150–153
IGMPv2, 660–661	NTP, 154–155
interoperability with IGMPv1, 2–3	proxy ARP, 146–147
leave groups and group-specific query	RARP, 147–150
messages, 666–669	standards documents for, 174
queries, 669	VRRP, 150–153
timers, 669	in access-group command, 785

IP ACL, 784	command references, 213
ACEs, 785–787	fast switching, 187
command references, 784	switching paths, 187–188
port matching, 786	IP hosts, 108
wildcard masks, 787–788	ip inspect sessions command, 795
IP addresses, 108–109	IP multicast routing, 643, 646
CIDR, 125–126	command reference, 746
classful logic, 108–109	ip multicast-routing command, 718
classless logic, 108, 111	ip ospf area command, 292
command reference, 136	ip ospf authentication command, 298
determining range of	ip ospf cost command, 292
binary method, 112-113	ip ospf cost 50 command, 290
decimal method, 113–115	ip ospf network command, 263
DHCP, 148–150	ip pim dense-mode command, 702
header format, 137–138	ip pim rp-address command, 730
inappropriate IP addresses, 790	ip pim sparse-mode command, 718
NAT, 127–129, 135	ip pim spt-threshold command, 727
dynamic NAT, 130–134	ip policy command, 201
static NAT, 128–130	IP Precedence, 497–498
PAT, 131–132	IP prefix lists, 318–319
private addressing, 127	ip proxy-arp, 205
protocol field values, 138	IP routing tables, 402
route summarization, 121–122	adding eBGP routes, 402–403
exclusive summary routes (binary	adding iBGP routes, 404–406
method), 124	BGP synchronization and
inclusive summary routes (binary method), 122–123	redistributing routes, 406–408 confederations, 409–411
inclusive summary routes (decimal method), 123–124	configuring confederations, 411–414 disabling BGP synchronization, 408
standards documents, 135	RRs, 414–419
subnet numbers	adding multiple BGP routes, 460
determining all (binary method),	backdoor routes, 403-404
116–118	IP SLA, configuring, 163–165
determining all (decimal method),	IP Source Guard, 777
118–119	ip verify source command, 777
subnets	IPP (IP Precedence) field, 497–498
allocation, 119–120	IPSs, enabling Cisco IOS IPS, 802–804
practice questions, 3–45	IPv6
size of, 111–112	/64 address, 885
ip bgp-community new-format	abbreviation rules, 885
command, 484	ACLs, 903
IP cef global configuration command, 188	anycast addresses, 891
ip classless command, 195, 342	CDP, 901–902
IP community lists, matching, 485	DAD, 898
ip community-list command, 484, 489	DHCP, 902
ip default-network command, 346–347	DNS, 901
IP forwarding, 186–187	EIGRP, configuring, 918–927
classful routing, 194–195	EUI-64, 892–893
classless routing, 194–195	ICMPv6, 899

MLD, 940–942	group radius, 764
multicast addresses, 889-891	group tacacs+, 764
multicast routing, configuring, 943	not-advertise, 341
multicast static routes, 942	out, 438
ND protocol, 894–895	passive, 622
NA messages, 896	summary-only, 439
NS messages, 896	
RA messages, 897	
RS messages, 897–898	L
neighbor unreachability detection, 899	LACP (Link Aggregation Control Protocol),
OoS, 931	83–84
class maps, 932	LANs
congestion avoidance, 933	DRs, 260–262
static routes, configuring, 904, 906	switch forwarding behavior, 18
tunneling, 933–935	LAPF (Link Access Procedure for
automatic 6to4 tunnels, 937–938	Frame-Mode Bearer Services), 625
configuring, 935–936	launching applications, 649
ISATAP tunnels, 939	Layer 2, 13–15
<i>NAT-PT, 939</i>	address formats, 16–17
over IPv4 GRE tunnels, 936–937	EtherChannels, troubleshooting, 98–99
unicast addresses, 886–889	payload compression, 621
unicast routing protocols, OSPFv3, 908–918	STP, troubleshooting, 95
unicast RPF, configuring, 900–901	troubleshooting, 91–94, 100
unspecified addresses, 892	trunking, troubleshooting, 95–96
IPv6 route redistribution, 927–930	VTP, troubleshooting, 96–98
ISATAP tunnels, 939	security, 783–784
ISL (Inter-Switch Link), 48–49	directed broadcasts, 788–789
configuring, 49–51	established keyword, 791
isolated VLANs, 41	inappropriate IP addresses, 790
IST (Internal Spanning Tree), 88	IP ACL, 784
. (ACEs, 785–787
	wildcard masks, 787–788
J	RFCs, 784
join messages, CGMP, 675, 709	RPF checks, 788–789
joining	smurf attacks, 788–789
groups, 649	TCP intercept, 792
IGMP, 658–659	TCP SYN flood, 790
IGMP snooping, 680	troubleshooting, 349–359
shared trees, PIM-SM, 720–722	Layer 3 switching, 195
	LCP (Link Control Protocol), 615, 43, 44
V	configuration, 615–617
K	LFI, 619–620
K values (EIGRP), 222	MLP, 617–618
keepalive timer, 378	LDP (Label Distribution Protocol), 829-832,
key chains, 238	838–839
RIP authentication, 17	Learning state (Spanning Tree), 74
keywords	leave groups, IGMPv2, 666–669
allow-default, 789	leave messages, CGMP, 677
established, 787	Lempel-Ziv Stacker (LZS), 621

LFI (Link Fragmentation and	triggered updates and poisoned routes, 9-11
Interleaving), 619	tuning, 13–14
LCP, 619–620	loopback circuitry, NICs, 10
MLP, 636–637	looped link detection, LCP, 615, 44
LFIB (Label Forwarding Information Base),	loop-inconsistent state, 90
822, 832–836	low-latency queuing. See LLQ, 535
examples entries, 836–838	LQM (Link Quality Monitoring), LCP,
MPLS IP forwarding, 825–826	615, 44
LIB (Label Information Base), 832–836	LSAs, 254, 908-909
entry examples, 836–838	headers, 259
limiting bandwidth	LSA type 1, 272–275
CBWFQ bandwidth, 538–541	LSA type 2, 272–275
LLQ, 543-544	LSA type 3, 275–278
Link Quality Monitoring (LQM), LCP,	LSA type 4, 278–279
615, 44	LSA type 5, 278–279
link state, 254	lsa-group command, 305, 24
link-local addresses, 887–888	LSAs (link-state advertisements)
link-state advertisements (LSAs), 254	LSID (link-state ID), 272
link-state ID (LSID), 272	LSP (label switched path), 830
Link-State Refresh (LSRefresh), 269	LSRefresh (Link-State Refresh), 269, 305
Link-State Request (LSR), 259	LSR (label switch routers), 259, 824
Listening state (Spanning Tree), 74	FEC, 870, 872
little-endian bit order, 16	LIB, 832–838
LLC (Logical Link Control), 13	LZ (Lempel-Ziv) compression, 621
LLQ (low-latency queuing), 535,	LZS (Lempel-Ziv Stacker), 621
541–543, 545	r
bandwidth, 543–544	5.4
configuring, 541–543	M
FRTS, configuring, 588–589	MAC address reduction, 69
priority queues, 545	MAC addresses
tuning shaping for voice, 580–583	mapping to multicast IP addresses,
LMI (Local Management Interface), 624–625	656–657
load balancing	overriding, 17
EIGRP, 20, 237	tables
PortChannels, 82	displaying, 59, 102, 213, 811
local computation, 229–231	learning, 19–20
EIGRP, 229–231	Management Information Base (MIB), 155
LOCAL_PREF PA, 457, 467-468	mandatory PAs, 456
log-adjacency-changes detail command, 290	many-to-few multicasts, 646
logic	many-to-many multicasts, 646
discarding, 547	map-class shape-with-LLQ, 634
MLS logic, 195–196	mapping multicast IP addresses to MAC
Logical Link Control (LLC), 13	addresses, 656–657
login authentication command, 764	mark probability denominator (MPD), 548
login security, overriding defaults for, 764–765	masks
Loop Guard, 89–90	classful IP addressing, 108
loop prevention, RIP, 6–7	wildcard masks, 434
ceased updates, 11–13	
ceased updates, 11–15	match as-path list-number command, 449

match commands (MQC), 506–507, 524–525	MLD (Multicast Listener Discovery), 940–942
match ip address command, 201	MLP
match length command, 201	LCP, 617–618
MaxAge timer, 305, 23	LFI, 619–620
maximum-paths command, 460, 480–482	MLP (Multilink PPP), 615, 44
BGP decision process tiebreakers, 476–477	MLS (multilayer switching), 195
max-metric router-lsa on-startup announce-	configuring, 197, 199-201
time command, 301	Layer 3 interfaces, 197
max-metric router-lsa on-startup wait-for-	logic, 195–196
bgp command, 301	routed ports, 196
max-reserved-bandwidth command, 538	mnemonics for memorizing BGP decision
MBGP (Multiprotocol Border Gateway	process, 461–462
Protocol), 697	modifying queue length, 534
MC (Master Controller), 208–209	Modular QoS CLI. See MQC, 503
MDRR (Modified Deficit Round Robin),	MOSPF (Multicast Open Shortest Path
550–552	First), 649, 701, 716
MED (MULTI_EXIT_DISC)	MP-BGP, 846–848
configuring	configuring between PEs, 861–863
multiple adjacent autonomous	MPD (mark probability denominator), 548
systems, 475–476	MPLS
single adjacent AS, 475	data plane, LFIB, 822
features of, 474	FEC, 870–872
scope of, 476	LSP, 830
messages	LSRs, 824
Assert messages, PIM, 713–714	See also MPLS VPNs
CGMP, 678	shim header, 826
Graft messages, PIM-DM, 711–712	unicast IP forwarding, 821–822
Join, 709	control plane, 829–839
OSPF messages, 255–256	data plane, 822–828
PIM-DM summary of messages, 715	MPLS Experimental (EXP) field, 502
Prune messages, PIM-DM, 703–705	MPLS TTL propagation, 827
SNMP, 157–158	MPLS VPNs, 839
state refresh messages, PIM-DM, 709–710	configuring, 851–852
metacharacters, 443	control plane, 844–851
metric weights command, 226	MP-BGP, 846–848
metrics	overlapping VPN support, 850–851
calculating, 227, 279–280	route targets, 848–850
of redistributed routes, setting, 325–326	VRF table, 844–846
redistribution routes, 338	data plane, 863–864, 866–869
redistribution routes, influencing, 337–339	egress PE, 866–867
route redistribution, 325–326	ingress PE, 868–869
MHSRP, 153	PHP, 869
MIB (Management Information Base),	VPN label, 865
155–158	IGP
Microsoft Point-to-Point Compression	configuring, 855–858
(MPPC), 621	redistribution, configuring, 858–860
minimum shaping rate, 576	MP-BGP, configuring between PEs,
MIR (minimum information rate), 576	861–863
MISTP (Multiple Instance STP), 87	PHP, 843

resolving overlapping prefixes, 840–843	multicast scoping
VRF, configuring, 853–855	administrative scoping, 700
MPPC (Microsoft Point-to-Point	TTL scoping, 699–700
Compression), 621	multicast static static routes, 942
MQC (Modular QoS CLI), 503–504	multicasting, 646
class maps, 505–507	broadcast method, 648
match commands, 524-525	requirements for, 649
NBAR, 507–508	scaling, 651
MQC-based FRTS, configuring, 590	traffic, 651
mroute flags, 749, 49, 50	unicast, 647
MSDP (Multicast Source Discovery	multi-exit discriminators, 474
Protocol), 731	Multilink PPP (MLP), 615, 44
Anycast RP, 737–739	multiple adjacent AS, 476
MST (Multiple Spanning Trees), 87–88	Multiple Instance STP (MISTP), 87
MSTP (Multiple STP), 87	Multiple Spanning Trees (MST), 87–88
MULTI_EXIT_DISC (MED), 474	Multiprotocol Border Gateway Protocol
multi-action policing	(MBGP), 697
CB Policing configuration, 597–598	mutual redistribution
configuring, 597–598	at multiple routers, 330–332
multicast applications, 646	using route maps, 326–330
multicast Ethernet frames, 15	g
multicast forwarding using dense mode,	
694–695	N
multicast forwarding using sparse mode,	naming VLANs, 59, 213
697–699	NAT (Network Address Translation),
multicast IP addresses, 15, 652	125–129, 135
GLOP addressing, 654	dynamic NAT configuration, 132–134
mapping to MAC addresses, 656–657	dynamic NAT (without PAT), 130–131
permanent multicast groups, 653	static NAT, 128–130
private multicast domains, 655	NAT-PT (Network Address Translation-
range and structure, 652, 655	Protocol Translation), 939
SSM, 654, 744–745	NBAR (Network-Based Application
transient groups, 653–655	Recognition), 507–508, 515
multicast IPv6, 889–891, 940–942	CB Marking tool, 515–516
Multicast Open Shortest Path First	configuring, 515–516
(MOSPF), 649	MQC classification with, 507–508
	NBMA (nonbroadcast multi-access)
multicast routing, 693–694	networks, 263
dense mode routing protocols, 695	OSPF network types, 264–268
dense-mode protocols, 694	setting priority on, 266–267
dense-mode routing protocols. See dense-	NCP (Network Control Protocol), 615
mode routing protocols, 700	ND protocol for IPv6, 894–895
IPv6, configuring, 943	- · · · · · · · · · · · · · · · · · · ·
multicast forwarding using dense	NA messages, 896
mode, 695	NS messages, 896
multicast forwarding using sparse	RA messages, 897
mode, 697	RS messages, 897–898
problems, 693	neighbor peer-group command, 375
RPF check, 695–697	neighbor command, 264, 268, 478
sparse mode routing protocols 607_600	neighbor default-originate command, 392

neighbor ebgp-multihop command, 411, 478	nonbroadcast multi-access (NBMA)
neighbor filter-list command, 449	networks, 263
neighbor ID, 477, 479	noncanonical bit order, 16
maximum-paths command, 481–482	nontransitive PAs, 456
neighbor remote-as command, 375–376	normal-range VLANs, 46-47
neighbor route-map command, 449	not-advertise keyword, 341
neighbor shutdown command, 379–380	NTP (Network Time Protocol), 154–155
neighbor state, 256	numeric ranges, OSPF, 306
OSPF, 306	
neighbor unreachability detection (IPv6), 899	
neighbor weight command, 466	0
neighbors, 221–224	OER (optimized edge routing), 206–208
advertising BGP routes to, 393	offset lists
BGP Update message, 393–394	EIGRP, 242
determining contents of updates,	RIP, 18
394–396	optimizing
impact of decision process and	DRs on LANs, 260–262
NEXT_HOP, 396–401	STP, 79
BGP neighbors. See BGP neighbors, 371	BackboneFast, 79, 81
discovering, 257–258	discovery and configuration of
EIGRP, 221–224	PortChannels, 83–84
network backdoor command, 404	load balancing PortChannels, 82
network command, 292	PortChannels, 82
injecting prefixes and routes into BGP	PortFast, 79–81
tables, 380–383	UplinkFast, 79–81
network part (classful IP addressing), 108	Organizationally Unique Identifier
networks, 108–110	(OUI), 16
NBMA networks	ORIGIN PA, 392-393, 468, 473
setting priority on, 266–267	OSPF
OSPF network types, 264–266, 268	ABR LSA type 3 filtering, 295–296
NEXT_HOP PA, 395, 456, 476	command references, 302–304
next-hop features, RIP, 17–18	configuring, 288–290
NICs, loopback circuitry, 10	alternatives to OSPF network
NLPID (Network Layer Protocol ID)	command, 292
field, 625	authentication, 298–301
NLRI (network layer reachability	costs, 290–292
information), 380	stub router, 301
filtering, 434–437	virtual links, 296–298
COMMUNITY values, 489	costs, 290–292
route maps, 437	database exchange, 254
soft reconfiguration, 438	IP protocols, 89, 255
VPN-V4 address family format, 846	RIDs, 254–255
no auto-summary command, 380	DRs
no frame-relay inverse-arp command, 193	election on LANs, 262–263
no frame-relay inverse-art command, 193	on LANs, 260
no ip classless command, 195	optimizing on LANs, 260–262
no ip directed-broadcast command, 788	filtering, 293
no ip route-cache cef commands, 188	ABR LSA type 3 filtering, 295–296
	** *
no synchronization command, 405	distribute-list command, 293–294

messages, 255–256	configuration, 234–237
DD messages, flooding LSA headers	convergence, 228–234
to neighbors, 258	load balancing, 237
hello messages, discovering	packet types, 246
neighbors, 257–258	topology table, 226–228
LSA headers, 259	updates, 224–226
NBMA networks, 264–268	GLBP, 150–153
neighbor states, 306	HSRP, 150–153
network types, 263	NTP, 154–155
numeric ranges, 306	proxy ARP, 146-147
processes, clearing, 290–292	RARP, 147–150
RIDs, 254–255	RIP, 5–6
route redistribution, static routes, 345-346	authentication, 17
route summarization, 341–342	command reference, 19–20
SPF calculation, 268–269	configuration, 15–17
steady-state operation, 269	convergence and loop prevention,
stubby areas, 281–284	6–14
wait time, 262	distribution list and prefix list
ospf auto-cost reference-bandwidth, 292	filtering, 18
OSPF	next-hop and split horizon features, 12
OSPFv3	offset lists, 18
authentication, 918	standards documents, 19
configuring, 911–917	standards documents for, 174
in NBMA networks, 909–910	VRRP, 150–153
LSAs, 908–909	packets, 548
over Frame Relay, configuring, 910	conforming packets, 591
OUI (Organizationally Unique Identifier), 16	Ethernet, 13
out keyword, 438	exceeding packets, 591
outgoing interface lists, 704	queuing, 535
Outside Global addresses, 128	violating packets, 591
Outside Local addresses, 128	PAgP (Port Aggregation Protocol), 83–84
overlapping prefixes, resolving with MPLS	parameter maps (ZFW), configuring, 799–80
VPN, 840–843	parameters for FRTS configuration, 587–588
overlapping VPNs, MPLS VPN support,	PAs (path attributes), 370
850–851	BGP, 420
overriding	NEXT_HOP, 395
defaults for login security, 764–765	ORIGIN, 392–393, 468–469, 473
MAC addresses, 17	password command, 757
	passwords, CLI, 757–758
	enable and username passwords, 758–759
neeket routing	PAT (Port Address Translation), 131–134
packet routing ARP, 146–147	path vector logic, 370
BOOTP, 147–150	payload compression, Frame Relay, 632–634
command reference, 175–176	PDLMs (Packet Description Language
DHCP, 147–150	Modules), 516
EIGRP, 221	peak information rate (PIR), 593
	peak rates, CB Shaping, 584
adjacencies, 221–224 command reference, 244–245	PE-CE IGP, redistribution into MP-BGP, configuring, 858–860
communa rejerence, 244–243	configuring, 858-860

Per VLAN Spanning Tree Plus (PVST+),	shared distribution trees, 724–725
74–76	shortest-path tree switchovers, 727–729
permanent multicast groups, multicast IP	source registration process, 722-724
addresses, 653	sources sending packets to RP, 718-720
PEs, MP-BGP, configuring between,	steady-state operations by continuing to
861–863	send joins, 725–726
PfR (performance routing), 206–208	versus PIM-DM, 717, 743
configuring, 209–211	ping command, troubleshooting Layer 3
device roles in, 208	issues, 357
MC routers, 209	PIR (peak information rate), 593
PHBs (Per-Hop Behaviors), 498	PIRO (protocol-independent routing
AF PHB, 499	optimization), 207
Assured Forwarding (AF) PHBs, 499–500	Point-to-Point Protocol. See PPP, 614
Class Selector (CS) PHBs, 499	poisoned routes
Expedited Forwarding (EF) PHBs, 500–501	RIP, 9–11
PHP (penultimate hop popping), 843	poisoned routes (RIP), 9–11
PIM (Protocol Independent Multicast), 697	police command, 595, 598
bidirectional PIM, 742–743	policers, 517–518
for IPv6, 941–942	policing
sparse-dense mode, 733	CB Policing, 567, 596
PIM-DM (Protocol Independent Multicast	single-rate, three-color policing, 592–593
dense mode), 649–652	single-rate, two-color policing, 591–592
Assert messages, 713–714	two-rate, three-color policing, 593–594
designated routers, 715	policing per class, 596
forming adjacencies with PIM hello	policy maps, 583
messages, 701	policy routing, 201–205, 519
Graft messages, 711–712	set commands, 202
Prune messages, 703–705	policy-map command (MQC), 504
Prune Override, 712–713	policy-map queue-voip, 582
reacting to failed links, 705–707	poll interface, 305, 24
rules for pruning, 707–709	Port Aggregation Protocol (PAgP), 83
source-based distribution trees, 702–703	port matching, IP ACE, 786
steady-state operation and state refresh	port security configuration commands, 769
messages, 709–710	PortChannels, optimizing STP
summary of messages, 715	discovery and configuration, 83–84
versus PIM-SM, 717, 743	load balancing, 82
PIM-SM (Protocol Independent Multicast	PortFast, optimizing STP, 79–81
Sparse Mode), 649, 699, 717	ports, 67
Assert messages, 713–714	access ports, protecting, 89
designated routers, 715	designated ports, determining, 70–71
finding RPs, 730	root ports, determining, 69–70
Anycast RP with MSDP, 737–740	routed ports, MLS, 196
Auto-RP, 731–733	switch ports, 766
BSR, 735–736	switches, assigning to VLANs, 59
joining shared trees, 720–722	trusted ports, 766
Prune Override, 712–713	unused ports, 766
pruning shared trees, 729–730	user ports, 766
RP's multicast routing tables, 726–727	PPoE, configuring, 56, 58

PPP (Point-to-Point Protocol), 614, 43, 43	pruning
compression, 620	PIM-DM, 707–709
header compression, 621–622	shared trees, PIM-SM, 729-730
layer 2 payload compression, 621	pseudonodes, 273
LCP, 615, 43, 44	purposes, 500
configuration, 615–617	PVST+ (Per VLAN Spanning Tree Plus),
LFI, 619–620	74–76
MLP, 617–618	
security, 765	
ppp multilink fragment-delay	Q
commands, 619	QoS
ppp multilink interleave command, 619	AutoQoS
pre-classification, 518	for Enterprise, 522–523
prefix length, 111	for VoIP, 520–522
prefix lists, 241	for IPv6, 931
RIP, 18	class maps, 932
versus route maps and distribute lists	congestion avoidance, 933
(BGP), 438–439	MQC, 503
prefix part (IP addressing), 111	class maps, 505–507
prefixes, 108, 111	commands, 504
injecting into BGP tables, 380	NBAR, 507–508
network command, 380–383	pre-classification, configuring, 518
redistributing from IGP, static, or	RSVP, 559, 561
connected routes, 383–385	configuring, 562
prefix-list commands, 319	for voice calls, 563–564
prepending AS_PATH, 471, 473	service classes, 504
preventing suboptimal routes	troubleshooting, 605
setting the AD, 332–335	queries, IGMPv2, 669
using route tags, 335–337	Query Response Interval, 664
primary subnets, 222	query scope (EIGRP), limiting, 234
primary VLANs, 41	queue length, modifying, 534
priority command, 535, 542	queue-voip, 588
private IP addressing, 127	queuing, 529, 535
private multicast domains, multicast IP	CBWFQ, configuring, 536–538
addresses, 655	bandwidth, 538–541
private VLANs, 40–42, 782	command references, 536
process switching, IP forwarding, 188	discard categories, WRED, 547
protecting	egress queuing, 556–559
access ports, 89	hardware queues, 533
STP, 88	ingress queuing, 553–555
BPDU Guard, 89	interfaces versus subinterfaces and virtual
Loop Guard, 89–90	circuits, 534
Root Guard, 89	LLQ
UDLD, 89–90	bandwidth, limiting, 543–544
trunks, 89–90	configuring, 541–543
protocol field values, IP addressing, 138	with multiple priority queues, 545
proxy ARP, 146–147	MDRR, 550–552
Prune messages, PIM-DM, 703–705	protocol comparison, 546
Prune Override, PIM, 712–713	software queues, 533

tail drop, 546	rendezvous point (RP), 697
WRED, 546	Report Suppression, 664
configuration, 549–550	requesting LSA headers, 259
discard logic, 547–548	resetting BGP peer connections, 379–380
weight packets, 548–549	resolving Layer 2 issues, 100
QV (quantum value), 551	Retransmission, 305, 23
<i>''</i>	retrieving exam updates from companion
_	website, 984
₹	reverse-path-forwarding (RPF) paths, 694
RADIUS, 760–761, 50, 50	revision numbers (VTP), 43–44
configuring server groups, 764	RFCs
RADIUS attribute, 778	DiffServ, 526
radius-server host, 764	Layer 3 security, 784
ranges of multicast addresses, 655	RGMP (Router-Port Group Management
Rapid Spanning Tree Protocol (RSTP), 84–86	Protocol), 672, 683-685
RARP, 147–150	RIB (BGP Routing Information Base), 380
RAT (Router Audit Tool), 790	RIB (Routing Information Base), 822
rate-limit command, 599	RID (router identifier), 254
rate-limiting, storm-control command,	RIP, 5–6
780–781	authentication, configuring, 17
RD (reported distance), 227	autosummarization, configuring, 15–17
RDs (Route Distinguishers), 846–848	command reference, 19–20
reacting to failed links, PIM-DM, 705-707	configuration
received traffic, 23	autosummarization, 15–17
records, 165	next-hop and split horizon features, 17
redistribute command, 318, 321-322	convergence, 6–7
redistribute connected command, 468	ceased updates, 12
redistribute ospf commands, 325	converged steady-state, 7–9
redistribute static, 344–345	poisoned routes, 9–11
redistribution, 321, 326-330	steady-state operation, 8
command references, 361	timers, 11–14
metrics and metric types, 337–339	triggered updates, 9–11
mutual redistribution at multiple routers,	tuning, 13–14
330–332	distribute lists, 18
route maps	loop prevention, 6–7
with match command, 316–317	next-hop features, configuring, 17–18
with set commands, 317	offset lists, configuring, 18
setting metrics, metric types, and tags,	route filtering, configuring, 18
325–326	standards documents, 19
using default settings, 322–325	RITE (Router IP Traffic Export),
refilling dual token buckets, 593	configuring, 166–167
regular expressions, matching AS_PATH,	RJ-45 pinouts, 7–8
443–444	RMON, configuring, 169–170
relay agents (DHCP), 149	Root Guard, 89
remote binding, 834	enabling, 767
Remote Monitoring MIB, 158	Root Port (RP), 69
removing	root ports, determining, 69–70
COMMUNITY values, 485, 489	root switches, electing, 67–69
private ASNs, 470–471	route aggregation, AS_PATH, 471–473
±	

route cache, 187	router bgp command, 375, 411
route filtering	router identifier (RID), 254
EIGRP, configuring, 240–242	Router-Port Group Management Protocol.
RIP, configuring, 18	See RGMP, 672
route maps	routers
configuring with route-map command,	ABRs, 270
314–316	BGP router ID of advertising router, 477
deny clauses, 330	configuring VLAN trunking on, 53-55
match and set commands	designated routers, PIM, 715
for BGP, 489	downstream routers, 707
for route redistribution, 316–317	mutual redistribution at multiple routers,
NLRI filtering, 437	330–332
policy routing, 519	OSPF router IDs, 254–255
redistributing subsets of routes, 326–330	queuing, 535
versus prefix lists and distribute lists	trunking, configuring, 53–55
(BGP), 438–439	upstream routers, 707
route redistribution, 321	routes
EIGRP, default routes, 344–345	backdoor routes, IP routing tables, 403-404
influencing with metrics, 337–339	default routes, 342–343
influencing with metrics and metric types,	adding to BGP, 391–392
337–339	injecting into BGP tables, 380
IPv6, 927	impact of auto-summary on
example of, 928–930	redistributed routes and, 385–387
mutual redistribution, 326–330	manual summaries and AS_PATHs,
configuring, 330–332	388–391
redistribute command, 321–322	network command, 380–381, 383
RIP, default routes, 344–345	redistributing from IGP, static, or
setting metrics, metric types, and tags,	connected routes, 383–385
325–326	ORIGIN, BGP tables, 392–393
suboptimal routes, preventing, 332-337	preventing suboptimal routes by setting
using default settings, 322–325	AD, 332–335
using route maps, 326–330	preventing suboptimal routes by using route
route summarization, 121-122, 339-340	tags, 335–337
creating default routes, 348	static routes, 344
default routes, creating, 347–348	routing
EIGRP route summarizatioin, 341	classful routing, 194-195
exclusive summary routes, binary	classless routing, 194–195
method, 124	policy routing, 201–205
inclusive summary routes	RP (rendezvous point), 697
binary method, 122–123	finding, 730, 741
decimal method, 123–124	Anycast RP with MSDP, 737–739
OSPF route summarizatioin, 341–342	with Auto-RP, 731–733
route tags	with BSR, 735–736
preventing suboptimal routes, 335-337	multicast routing tables, 726-727
suboptimal routes, preventing, 335-337	sources sending packets to, 718–720
routed ports, MLS, 196	RP (root port), 69
route-map command, 314–316	RPF (reverse-path-forwarding) paths, 694
BGP, 435	RPF check, multicast routing, 695-697,
Router Audit Tool (RAT), 790	788–789

RPT (root-path tree), 720	service-policy out command, 545
RPVST+ (Rapid Per VLAN Spanning	service-policy output command, 578
Tree+), 86	Session Description Protocol. See SDP, 659
RRs (route reflectors), 414–419	session monitoring, 20
RSPAN, 22	set as-path prepend command, 471
configuring, 25	set commands, 317
destination ports, restrictions, 22–23	policy routing, 202
received traffic, 23	set community none command, 485
transmitted traffic, 23	set fr-de command, 628
RSTP (Rapid Spanning Tree Protocol), 84–86	shape average, 584
RSVP, 559–561	shape command, 578, 580
configuring, 562	shape fecn-adapt command, 628
for voice calls, 563–564	shape peak mean-rate command, 584
RTO (Retransmission Timeout), 225	shape percent command, 583
RTP (Reliable Transport Protocol), 224, 225	shaped rate command, 573, 41
RTs (route targets), 848–850	shaping, 583
runts, 93	adaptive shaping, FRTS, 590
,	CB Shaping, 567
	configuring by bandwidth percent, 583–584
5	tuning shaping for voice using LLQ and Tc,
SAP (Service Advertising Protocol), 659	580–581
scaling, multicasting, 651	shaping queues, 572
schemes, queuing, 535	shaping rate, 573–576
SCP, configuring, 171	shared distribution trees, PIM-SM, 724–725
SDP (Session Description Protocol), 659	shared trees
secondary VLANs, 41	creating, 721
security	joining with PIM-SM, 720–722
AAA, 760–761	pruning, PIM-SM, 729–730
authentication methods, 761–763	shim header (MPLS), 826
groups of AAA servers, 764	Shortest Path First (SPF), 259
overriding defaults for login security,	shortest-path tree (SPT), 702
764–765	shortest-path tree switchovers, PIM-SM,
Cisco IOS IPS, 801	727–729
enabling, 802–804	show controllers command, 94
CoPP, 804–805	show interface command, 92–94
implementing, 806–808	show interface trunk command, 52
firewalls, ZFW, 796–799	show ip arp command, 205
Layer 3 security, 783–784	show ip bgp command, 449, 463, 465
port security, 767–771	show ip bgp commands, 392
PPP, 765	show ip bgp neighbor advertised-routes
sniffer traces, 44	command, 398
SNMP, 156, 159	show ip bgp neighbor neighbor-id advertised-
SSH, 759–760	routes command, 449
sequence numbers, 225–226	show ip bgp regexp expression command, 449
servers, groups of AAA servers, 764	show ip command, 27–28
service password-encryption command, 300,	show ip eigrp neighbor command, 225
758–759	show ip eigrp topology command, 228
service-policy command, 538	show ip interface command, 353–355
service-policy command (MQC), 504	show ip mroute, 724

show ip mroute command, 702	spanning-tree vlan command, 79
show ip ospf border-routers, 277	sparse mode multicast forwarding,
show ip ospf database command, 275	697–699
show ip ospf database summary link-id	sparse-dense mode PIM, 733
command, 277	sparse-mode routing protocols, 697–699
show ip ospf neighbor command, 256	PIM-SM, 717
show ip ospf statistics command, 277	joining shared trees, 720–722
show ip protocols command, 352–353	pruning shared trees, 729–730
show ip route command, 284	RP's multicast routing tables,
show monitor session command, 25	726–727
single adjacent AS, 475	shared distribution trees, 724–725
single-bucket, two-color policing, 591	shortest-path tree switchovers,
single-rate, three color policing, CB Policing	727–729
configuration, 595–596	source registration process, 722–724
single-rate, three-color policing, 592–596	sources sending packets to RP,
single-rate, two color policing, configuring,	718–720
591–592	steady-state operations by continuing
SLSM (Static Length Subnet Masking), 118	to send, 725–726
smurf attacks, 788–789	versus PIM-DM, 717
SNAP (Subnetwork Access Control), 13	SPF (Shortest Path First), 259, 268–269
sniffer traces, 44	split horizon, 240
SNMP (Simple Network Management	RIP, 17
Protocol), 155	SPT (shortest-path tree), 702
Get message, 157	SRR (shared round-robin), 553
Inform message, 158	SRTT (Smooth Round-Trip Time), 225
MIBs, 156–158	SSH (Secure Shell), 759–760, 783
protocol messages, 157-158	configuring, 173
protocols, 156	SSM (Source-Specific Multicast), 653, 670,
Response message, 158	744–745
security, 159	multicast IP addresses, 654
security and administration, 156	standards documents
Set command, 158	for IP addressing, 135
traps, 158	for packet routing protocols, 174
versions, 156	RIP, 19
soft reconfiguration, NLRI filtering, 438	state refresh messages, PIM-DM, 709-710
software queues, 533	static clients (NTP), 154
solicited host membership report, IGMPv1, 663–665	static configuration, Frame Relay mapping, 192–193
source ports (SPAN), 22	static default routes, OSPF redistribution,
source registration process, PIM-SM, 722–724	345–346
source-based distribution trees, PIM-DM,	Static Length Subnet Masking (SLSM), 118
702–703	static NAT, 128–130
source-responder model, 163	static routes
Source-Specific Multicast (SSM), 653	IPv6, configuring, 904, 906
SPAN, 22	redistribute static, 344–345
configuring, 24	redistribution, 344–345
destination ports, restrictions, 22–23	steady-state operation, 7–9, 269, 725–726
received traffic, 23	store-and-forward switches, 27
transmitted traffic, 23	storing VLAN configurations, 47–48
spanning-tree portfast command, 85	storm-control command, 780–781

STP (Spanning Tree Protocol), 63, 67	inclusive summary routes (binary
calculating costs to determine RPs, 69	method), 122–123
choosing which ports forward, 67	inclusive summary routes (decimal
determining designated ports, 70–71	method), 123–124
determining root ports, 69–70	size of, 111–112
electing root switches, 67–69	suboptimal routes, preventing, 332–337
command references, 102	successor routes, 228
configuring, 76–79	summaries
converging to STP topology, 71–72	LSAs, 281
optimizing, 79	manual summaries and AS_PATHs (BGP
BackboneFast, 79, 81	tables), 388–391
discovery and configuration of	summary-address command, 342
PortChannels, 83–84	summary-only keyword, 439
load balancing PortChannels, 82	supernetting, 127
PortChannels, 82	SVIs (switched virtual interfaces), 196
PortFast, 79–81	switch buffering, 9–10
UplinkFast, 79–81	switch ports, 766–767
protecting, 88	best practices for unused and user ports, 767
BPDU Guard, 89	802.1X authentication using EAP,
Loop Guard, 89–90	777–780
Root Guard, 89	DAI, 771–774
UDLD, 89–90	DHCP snooping, 774–776
topology change notification and updating the CAM, 72–73	IP Source Guard, 777 port security, 767–771
transitioning from blocking to forwarding,	configuring, 11–13
73–74	switched virtual interfaces (SVIs), 196
troubleshooting, 95	switched virtual interfaces (5 v is), 150 switches, 18, 26
STP forwarding, 67	command output showing MAC address
stratum level (NTP), 154	table, 18–20
stub networks, OSPF LSA types, 272	cut-through, 27
stub routers	Ethernet, 8
OSPF, 301	fragment-free switches, 27
EIGRP, 234–236	internal processing, 26
stubby areas, OSPF, 281–284	LAN switch forwarding behavior, 18
stuck-in-active state (EIGRP), 233–234	Layer 3 switching, 195
subsets of traffic, CB Policing, 596	ports, assigning to VLANs, 59
subinterfaces, queuing, 534	root switches, electing, 67–69
subnet broadcast address, 112	store-and-forward, 27
subnets, 108, 111	switch port configuration, 11–13
allocation, 119-120	unicast forwarding, 18–19
classful IP addressing, 109–110	VLANs, 35
decimal to binary conversion table, 979–981	switching paths, 187
numbers, determining	IP forwarding, 188
binary method, 112–118	switchport access vlan command, 42, 47
decimal method, 113–119	switchport mode command, 53
practice questions, 3–45	switchport nonegotiate interface command, 53
primary subnet, 222	switchport port-security maximum
route summarization, 121–122	command, 769
exclusive summary routes (binary	switchport trunk allowed command, 52
method), 124	switchport trunk encapsulation command, 53

symmetric active mode (NTP), 154	traffic rates, 517
synchronous serial links, command	traffic shaping, 572
references, 638	Bc, 573
Syslog, 159–160	Be, 574
System ID Extension, 68	CIR, 573
	egress blocking, 572
Т	Frame Relay, 576
•	GTS, 576–578
tables	mechanics of, 574–575
adjacency table, 188	on Frame Relay networks, 576
ARP and inverse ARP, 188–189	shaping rate, 573
IP routing tables, 402	Tc, calculating, 574
TACACS+, 760–761, 50, 50	terminology, 572–573
tacacs-server host commands, 764	token bucket model, 575
tags, route redistribution, 325-326	traffic-rate command, FRTS configuration,
tail drop, 546	586–587
Tc, 572-573, 41	traffic-shape fecn-adapt command, 628
calculating, 574	transient groups, multicast IP addresses,
tuning shaping for voice, 580–583	653, 655
TCN (Topology Change Notification), 73	transient multicast addresses. See transient
TCP intercept, 792	groups, 655
configuring, 792	transit network, OSPF LSA types, 272
intercept mode, 792	transitioning from blocking to forwarding
watch mode, 792	(STP), 73–74
TCP SYN flood, 790	transitive PAs, 456
TDP (Tag Distribution Protocol), 829	transmit queue, 533
Telnet, configuring, 172	transmitted traffic, 23
terminology, traffic shaping, 572–573	triggered extensions to RIP, 11
TFTP, configuring, 171	triggered extensions to KH, 11 triggered updates (RIP), 9–11
thresholds, logic, discarding, 547	troubleshooting
tiebreakers, BGP decision process, 459–460	Layer 2 problems, 91, 100
time synchronization, NTP, 154–155	EtherChannels, 98–99
timers	
IGMPv1 and IGMPv2, 669	STP, 95
RIP, 11–14	trunking, 95–96
· · · · · · · · · · · · · · · · · · ·	using basic interface statistics, 92–94
token bucket model, 575	VTP, 96–98
tools	Layer 3, 349–351
BGP filtering tools. See BGP filtering	debug ip routing command, 358–359
tools, 427	ping command, 357
NLRI filtering tools, 434	show ip interface command, 353, 355
Topology Change Notification (TCN), 73	show ip protocols command, 352–355
topology table, EIGRP, 226–228	QoS, 605
traffic, multicast traffic, 650–651	trunk configuration compatibility, 52-53
traffic contracts, 517	trunk ports, 766
traffic inspection, CBAC, 793	trunking
configuring, 795	802.1Q, 48–49
protocol support, 794	configuring, 49–51
traffic policers, 517–518, 567	ISL, 48–49
traffic profiles (WRED), 548	configuring, 49–51

native VLANs, 782	IP Source Guard, 777
protecting, 89–90	port security, 767–771
troubleshooting, 95–96	updates (EIGRP), 224
VLAN trunking, 48	sequence numbers, 225–226
802.1Q, 48–50	updating CAM, 72–73
ISL, 48–50	UplinkFast, optimizing STP, 79–81
trusted ports, 766	upstream routers, 707
TTL field (MPLS header), 827–828	USA (Unicast Source Address), 674
TTL scoping, 699–700	user mode CLI password protection, 758
tuning RIP convergence, 13–14	user ports, best practices for, 767
tunneling	802.1X authentication using EAP, 777–780
802.1Q-in-Q, 55–56	DAI, 771–774
IPv6, 933–935	DHCP snooping, 774–776
automatic 6to4 tunnels, 937–938	IP Source Guard, 777
configuring, 935–936	port security, 767–771
ISATAP tunnels, 939	username commands, 761
NAT-PT, 939	username password command, 759
over IPv4 GRE tunnels, 936–937	user-priority bits, 501
twisted pairs, 7–8	UTP cabling, 28
two-rate, three-color policing, 593–594	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
TX queue, 533	
Type fields, 17	V
-J.F,	Variable Length Subnet Masking (VLSM), 118
	subnet allocation, 119–120
U	VCs (virtual circuits), 534, 623
UDLD (UniDirectional Link Detection),	violating packets, 591
89–90	virtual links, configuring OSPF, 296–298
UDLD aggressive mode, 90	VLAN database configuration mode, 36–38
unicast, 15, 647	VLAN MPLS (VMPLS), 55
multicast routing, 693	VLAN trunking. See also VLANs
unicast forwarding, 18–19	802.1Q, 48–50
unicast IPv6 addresses, 886–887	allowed and active VLANs, 52
assigning to router interface, 888–889	allowed VLANs, 52
unicast routing protocols, OSPFv3	configuring on routers, 53–55
configuring, 911–917	ISL, 48–50
in NBMA networks, 909-910	trunk configuration compatibility, 52-53
LSAs, 908–909	VLANs, 35, 59
over Frame Relay, configuring, 910	active and not pruned, 52
unicast RPF, configuring, 900-901	and IP, 35
Unicast Source Address (USA), 674	community VLANs, 41
UniDirectional Link Detection (UDLD), 89	configuration storage locations, 47–48
Universal/Local (U/L) bit, 16	configuring, 35
unspecified IPv6 addresses, 892	VLAN database configuration mode,
unused ports, 766	36–38
best practices for, 767	creating, 36–38
802.1X authentication using EAP,	with configuration mode, 39–40
777–780	defining, 59, 213
DAI, 771–774	extended range, 46–47
DHCP snooping, 774–776	extended-range VLANs, 46

information, displaying, 59, 213, 812	W
interfaces, associating, 38-39	WAN marking fields (C&M), 501–502
isolated VLANs, 41	WANs, Frame Relay
layer 2 switches, 35	configuring, 628–630, 632
MLS logic, 196	congestion, handling, 626–628
naming, 59, 213	DLCI, 623–624
native VLANs, 782	encapsulation, 626
normal-range, 46–47	fragmentation, 634
primary VLANs, 41	headers, 626
private VLANs, 40–42, 782	LFI, 636–637
secondary VLANs, 41	LMI, 624–625
storing configurations, 47–48	payload compression, 632–634
trunking	watch mode, TCP intercept, 792
802.1Q, 48–51	WC mask (wildcard mask), 434
configuration, 59, 812	WCCP (Web Cache Communication
ISL, 48–51	Protocol), 160–161, 163
VLSM (Variable Length Subnet	weighted fair queuing. See WFQ, 535
Masking), 118	Weighted Random Early Detection (WRED).
subnet allocation, 119–120	546–548
VMPLS (VLAN MPLS), 55	weighted packets, WRED, 548-549
voice, tuning shaping for voice with LLQ and	WFQ (weighted fair queuing), 535
Tc, 580–583	wildcard masks, 434
VoIP, AutoQoS, 520	IP ACL, 787–788
on routers, 521–522	WRED (Weighted Random Early
on switches, 520–521	Detection), 546
VPN label (MPLS VPNs), 865 VPNs, MPLS, 839	configuration, 549–550
configuring, 851–863	configuring, 549–550
control plane, 844–851	DSCP-based WRED, 549
data plane, 863–869	exponential weighting constant, 549
overlapping prefixes, resolving, 840–843	full drop, 547
VPN-V4 address family format, 846	traffic profiles, 548
VRF (Virtual Routing and Forwarding)	weight packets, 549
tables, 841	discard categories, 547
configuring, 853–855	discard logic, 547–548
VRF Lite, 872–873	WTD (weighted tail drop), 555
configuring, 873–875	
with MPLS, 875	Z
without MPLS, 873-874	
VRRP (Virtual Router Redundancy	zero subnets, 112 ZFW (zone-based firewall), 796
Protocol), 150–153	
VTP (VLAN Trunking Protocol), 42	parameter maps, configuring, 799–800
configuration storage locations, 47–48	policy maps, configuring, 800–801 class maps, configuring, 799
configuring, 44–46, 159	configuring, 797
extended-range VLANs, 46	zones, configuring, 797–798
normal-range VLANs, 46–47	zone pairs (ZFW), configuring, 798
revision numbers, 43–44	zones (ZFW), configuring, 798
troubleshooting, 96–98	zones (zir 11), comiguing, 170
vty lines, 764	