MACGLOBL.DOT
3/28/201810:40 AM
Exam Ref 70-762: Developing SQL Databases (A Microsoft Press Title)
First Edition
[bookmark: _GoBack]
Copyright © 2017 Pearson Education, Inc.
ISBN-10: 1-5093-0491-6
ISBN-13: 978-1-5093-0491-2
Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the CD or programs accompanying it.
When reviewing corrections, always check the print number of your book. Corrections are made to printed books with each subsequent printing.
First Printing: January 2017
Corrections for July 11, 2017
	246
	LISTING 3-11 Create a new schema and add tables to the memory-optimized database
Reads:
USE ExamBook762Ch3_IMOLTP;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.Order_Disk (
 OrderId INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL
);
GO
CREATE TABLE Examples.Order_IM (
 OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(5) NOT NULL
)
WITH (MEMORY_OPTIMIZED = ON);
GO
	Should Read (copy and paste whole section):
USE ExamBook762Ch3_IMOLTP;
GO
CREATE SCHEMA Examples;
GO
CREATE TABLE Examples.Order_Disk (
 OrderId INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(10) NOT NULL
);
GO

CREATE TABLE Examples.Order_IM (
 OrderID INT NOT NULL PRIMARY KEY NONCLUSTERED,
 OrderDate DATETIME NOT NULL,
 CustomerCode NVARCHAR(10) NOT NULL
)
WITH (MEMORY_OPTIMIZED = ON);
GO

	249
	1st paragraph, below Exam Tip
Reads:
To observe the performance difference between an interpreted stored procedure and a natively compiled stored procedure, create two stored procedures as shown in Listing 3-12. In this example, the following portions of the code are specific to native compilation:
	
Should Read:
To observe the performance difference between an interpreted stored procedure and a natively compiled stored procedure, create three stored procedures as shown in Listing 3-12. In this example, the following portions of the code are specific to native compilation:

	249-250 (top)
	LISTING 3-12 Create stored procedures to test execution performance
Reads:
USE ExamBook762Ch3_IMOLTP;
GO

-- Create natively compiled stored procedure
CREATE PROCEDURE Examples.OrderInsert_NC
 @OrderID INT,
 @CustomerCode NVARCHAR(10)
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'English')
 DECLARE @OrderDate DATETIME = getdate();
 INSERT INTO Examples.Order_IM (OrderId, OrderDate, CustomerCode)
 VALUES (@OrderID, @OrderDate, @CustomerCode);
END;
GO

-- Create interpreted stored procedure
CREATE PROCEDURE Examples.OrderInsert_Interpreted
 @OrderID INT,
 @CustomerCode NVARCHAR(10),
 @TargetTable NVARCHAR(20)
AS
 DECLARE @OrderDate DATETIME = getdate();
 DECLARE @SQLQuery NVARCHAR(MAX);
 SET @SQLQuery = 'INSERT INTO ' +
 @TargetTable +
 ' (OrderId, OrderDate, CustomerCode) VALUES (' +
 CAST(@OrderID AS NVARCHAR(6)) +
 ',''' + CONVERT(NVARCHAR(20), @OrderDate, 101)+
 ''',''' + @CustomerCode +
 ''')';
 EXEC (@SQLQuery);
GO
	Should Read (copy and paste whole section):

USE ExamBook762Ch3_IMOLTP;
GO

-- Create natively compiled stored procedure
CREATE PROCEDURE Examples.OrderInsert_NC
 @OrderID INT,
 @CustomerCode NVARCHAR(10)
WITH NATIVE_COMPILATION, SCHEMABINDING
AS
BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = N'English')
 DECLARE @OrderDate DATETIME = getdate();
 INSERT INTO Examples.Order_IM (OrderId, OrderDate, CustomerCode)
 VALUES (@OrderID, @OrderDate, @CustomerCode);
END;
GO

-- Create interpreted stored procedure for Disk table
CREATE PROCEDURE Examples.OrderInsert_Interpreted_Disk
 @OrderID INT,
 @CustomerCode NVARCHAR(10)
AS
 DECLARE @OrderDate DATETIME = getdate();
 INSERT INTO Examples.Order_Disk (OrderId, OrderDate, CustomerCode)
 VALUES (@OrderID, @OrderDate, @CustomerCode);
 GO
-- Create interpreted stored procedure for In-Memory table
CREATE PROCEDURE Examples.OrderInsert_Interpreted_IM
 @OrderID INT,
 @CustomerCode NVARCHAR(10)
AS
 DECLARE @OrderDate DATETIME = getdate();
 INSERT INTO Examples.Order_IM (OrderId, OrderDate, CustomerCode)
 VALUES (@OrderID, @OrderDate, @CustomerCode);
 GO

	250
	Paragraph above Listing 3-13
Reads:
Next, run the statements at least twice in Listing 3-13 to compare the performance of each type of stored procedure. Ignore the results from the first execution because the duration is skewed due to memory allocation and other operations that SQL Server performs one time only. The code in Listing 3-13 first inserts 100,000 rows into a disk-based table using an interpreted stored procedure and measures the time required to perform the INSERT operation. Then the code inserts rows into a memory-optimized table using the same interpreted stored procedure and measures the processing time. Last, the code deletes rows from the memory-optimized table, resets the time measurement variables, and then inserts rows into the table by using a natively compiled stored procedure.
	Should read (change in bold):
Next, run the statements at least twice in Listing 3-13 to compare the performance of each type of stored procedure. Ignore the results from the first execution because the duration is skewed due to memory allocation and other operations that SQL Server performs one time only. The code in Listing 3-13 first inserts 100,000 rows into a disk-based table using an interpreted stored procedure and measures the time required to perform the INSERT operation. Then the code inserts rows into a memory-optimized table using the corresponding interpreted stored procedure and measures the processing time. Last, the code deletes rows from the memory-optimized table, resets the time measurement variables, and then inserts rows into the table by using a natively compiled stored procedure.

	250-251
	Listing 3-13 Execute each stored procedure to compare performance
Reads:
SET STATISTICS TIME OFF;
SET NOCOUNT ON;

DECLARE @starttime DATETIME = sysdatetime();
DECLARE @timems INT;
DECLARE @i INT = 1;
DECLARE @rowcount INT = 100000;
DECLARE @CustomerCode NVARCHAR(10);

--Reset disk-based table
TRUNCATE TABLE Examples.Order_Disk;

-- Disk-based table and interpreted stored procedure
BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i as NVARCHAR(6));
 EXEC Examples.OrderInsert_Interpreted @i, @CustomerCode, 'Examples.Order_Disk';
 SET @i += 1;
 END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Disk-based table and interpreted stored procedure: ' AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;

-- Memory-based table and interpreted stored procedure
SET @i = 1;
SET @starttime = sysdatetime();

BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
 EXEC Examples.OrderInsert_Interpreted @i, @CustomerCode, 'Examples.Order_IM';
 SET @i += 1;
 END;
COMMIT;
SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Memory-optimized table and interpreted stored procedure: ' AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;

-- Reset memory-optimized table
DELETE FROM Examples.Order_IM;
SET @i = 1;
SET @starttime = sysdatetime();

BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
 EXEC Examples.OrderInsert_NC @i, @CustomerCode;
 SET @i += 1;
 END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Memory-optimized table and natively compiled stored procedure:'
 AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;
GO
	Should read:

SET STATISTICS TIME OFF;
SET NOCOUNT ON;

DECLARE @starttime DATETIME = sysdatetime();
DECLARE @timems INT;
DECLARE @i INT = 1;
DECLARE @rowcount INT = 100000;
DECLARE @CustomerCode NVARCHAR(10);

--Reset disk-based table
TRUNCATE TABLE Examples.Order_Disk;

-- Disk-based table and interpreted stored procedure
BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i as NVARCHAR(6));
 EXEC Examples.OrderInsert_Interpreted_Disk @i, @CustomerCode;
 SET @i += 1;
 END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Disk-based table and interpreted stored procedure: ' AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;

-- Memory-based table and interpreted stored procedure
SET @i = 1;
SET @starttime = sysdatetime();

BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
 EXEC Examples.OrderInsert_Interpreted_IM @i, @CustomerCode;
 SET @i += 1;
 END;
COMMIT;
SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Memory-optimized table and interpreted stored procedure: ' AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;

-- Reset memory-optimized table
DELETE FROM Examples.Order_IM;
SET @i = 1;
SET @starttime = sysdatetime();

BEGIN TRAN;
 WHILE @i <= @rowcount
 BEGIN;
 SET @CustomerCode = 'cust' + CAST(@i AS NVARCHAR(6));
 EXEC Examples.OrderInsert_NC @i, @CustomerCode;
 SET @i += 1;
 END;
COMMIT;

SET @timems = datediff(ms, @starttime, sysdatetime());
SELECT 'Memory-optimized table and natively compiled stored procedure:'
 AS [Description],
 CAST(@timems AS NVARCHAR(10)) + ' ms' AS Duration;
GO

	251
	Code section above Need More Review? Sidebar:

Reads:
[image:]
	Should read:

	Description
Disk-based table and interpreted stored procedure:
	Duration
 2882 ms

	Description
Memory-optimized table and interpreted stored procedure:
	Duration
2578 ms

	Description
Memory-optimized table and natively compiled stored procedure:
	Duration
1969 ms

Corrections for June 5, 2017
	5
	Last table, 3rd row:
Reads:
3 Popkova, Darya 000000012
	Should Read:

3 Popkova, Darya 000000013

	6
	End of 4th paragraph:
Reads:
record the first and last name of the person seperately.
	Should Read:

record the first and last name of the person separately.

	6
	Last line
Reads:
A lot of times, the data that doesn’t fit the atomic criteria is not different items, such as parts of a name, but rather it’s a list of items that are the same types of things.
	Should Read:
A lot of times, the data that doesn’t fit the atomic criteria is not the same item, such as parts of a name, but rather it’s a list of items that are the same types of things.

	7
	Second to last paragraph [missing right square bracket]
Reads:
Equipment.ComputerAssociatedItem (Tag [Reference to Computer], AssociatedItem, [key Tag, AssociatedItem)
	Should read:

Equipment.ComputerAssociatedItem (Tag [Reference to Computer], AssociatedItem, [key Tag, AssociatedItem])

	8
	1st sentence after bulleted item, “CarManufacturerHeadquarters”
Reads:
Each of the "nonkey" attributes should say something about the combination of the two key attributes."
	Should Read:

Each of the non-key attributes should say something about the combination of the two key attributes.

	10
	First code section, 2nd line of code
Reads:
AssignedEmployee [Reference to Employee]
	
Should read:
AssignedEmployee [Reference to Employee])

	10
	3rd section, 1st line of code
Reads:
Equipment.ComputerAssociatedItem (Tag [Reference to Computer], AssociatedItem, [key Tag, AssociatedItem)
	
Should read:
Equipment.ComputerAssociatedItem (Tag [Reference to Computer], AssociatedItem, [key Tag, AssociatedItem])

	12
	Last paragraph
Reads:
The name of the table must be unique from all other object names, including tables, views, constraints, procedures, etc.
	
Should read:
The name of the table must be unique from all other object names across its database schema, including tables, views, constraints, procedures, etc.

	13
	Last paragraph before note
Reads:
If the column is part of a PRIMARY KEY constraint that is being added in the CREATE TABLE statement [...], or the setting: ANSI_NULL_DFLT_ON, then NULL values are allowed.
	
Should read:
If the column is not part of a PRIMARY KEY constraint that is being added in the CREATE TABLE statement [...], or the setting: ANSI_NULL_DFLT_ON, then NULL values are allowed.

	13
	4th paragraph, 1st sentence
Reads:
NULL is a special value that mathematically means UKNOWN
	Should read:
NULL is a special value that mathematically means UNKNOWN

	16
	4th bullet beneath the bulleted item, “Precise Numeric”
Reads:
Integers between 2,147,483,648 to 2,147,483,647 (–2^31 to 2^31 – 1) (4 bytes).
	Should read:

Integers between -2,147,483,648 to 2,147,483,647 (–2^31 to 2^31 – 1) (4 bytes).

	16
	5th bullet beneath the bulleted item, “Precise Numeric”
Reads:
Integers between 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
(-2^63 to 2^63 – 1) (8 bytes).
	Should read:

Integers between -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
(-2^63 to 2^63 – 1) (8 bytes).

	20
	Second to last paragraph
Reads:
Now, in the FullName column, we see either the LastName or LastName, FirstName for each person in our table.

	Should read
Now, in the FullName column, we see either LastName or LastName, FirstName for each person in our table.

	20
	last paragraph
Reads:
Now the expression be evaluated during access in a statement, but is ...

	Should Read:
Now the expression is not evaluated during access in a statement, but is ...

	35
	First paragraph, first 'SELECT......' example
Reads:
Note that you can index a computed column as long as it is deterministic. You can tell if a column can be indexed, even if it is computed by using the COLUMNPROPERTYEX() function:
SELECT CONCAT(OBJECT_SCHEMA_NAME(object_id), '.', OBJECT_NAME(object_id)) AS TableName,
name AS ColumnName, COLUMNPROPERTYEX(object_id, name, 'IsIndexable') AS Indexable
FROM sys.columns
WHERE is_computed = 1;
	Should Read:
Note that you can index a computed column as long as it is deterministic. You can tell if a column can be indexed, by using the COLUMNPROPERTY() function:
SELECT
CONCAT(OBJECT_SCHEMA_NAME(object_id), '.', OBJECT_NAME(object_id)) AS TableName,
name AS ColumnName,
COLUMNPROPERTY(object_id, name, 'IsIndexable') AS Indexable
FROM sys.columns
WHERE is_computed = 1;

	65
	Bottom, Need More Review? box
Reads:
There are several rules that make configuring a partitioned a complex operation that cannot be done with any set of similarly configured tables.

	Should Read:

There are several rules that make configuring a partitioned a complex operation. You cannot simply create a partitioned view with any set of similarly configured tables.

	68
	5th bullet from top
Reads:
SUM() function referencing more than one column
	Should read:

SUM() function referencing a nullable expression

	69
	First sentence after Figure 1-22:
Reads:
Add the following unique clustered index. It doesn’t have to be unique, but if the data allows it, it should be.
	
Should read:
Add the following unique clustered index. The index needn’t be unique, but since the data allows it, it is best to create it as unique.

	100
	Bulleted item

Reads:
CREATE CLUSTERED COLUMNSTORE INDEX CColumnstore ON Sales.InvoiceItemFact; This is the best choice of index from the list. It compresses the base data in the table to make the IO impact the smallest for all queries. It works nicely with the PRIMARY KEY constraint index to allow singleton updates/seeks as needed for ETL and simple queries also.
	Should read:
CREATE CLUSTERED COLUMNSTORE INDEX CColumnstore ON Sales.InvoiceItemFact;
This is the best choice of index from the list. It compresses the base data in the table to make the IO impact the smallest for all queries. It works nicely with the PRIMARY KEY constraint index to allow singleton updates/seeks as needed for ETL and simple queries also. Note that you will need to change the existing primary key constraint to NONCLUSTERED before executing this statement, since by default a PRIMARY KEY constraint creates a CLUSTERED index.

	108
	2nd paragraph, last sentence
Reads:
For this example, we limit the cost to a range of greater than 0 to 999,9999.
	
Should read:
For this example, we limit the cost to a range of greater than 0 to 999.9999.

	108
	1st paragraph, second to last sentence:
Reads
You can use a decimal(2,0) to get to a domain of 0-99, but any integer type is better than a type that is implemented in the software of SQL Server rather than using the hardware as an integer would.
	Should read:

You can use a decimal(2,0) to get to a domain of -99 to 99, but any integer type is better than a type that is implemented in the software of SQL Server rather than using the hardware as an integer would.

	112
	Last paragraph, first sentence
Reads:
This actually works because the NULL is allowed by the column, and any column comparison that returns UNKNOWN (NULL) is accepted.
	
Should read:
This actually works because of the NULL value in the KeyColumn2, since the comparison of NULL to the referenced table returns UNKNOWN (NULL), the row is accepted, regardless of whether the KeyColumn1 value exists or not.

	116
	Bottom, last query section
Reads:
WITH EmployeeHierarchy AS
(
SELECT EmployeeID, CAST(CONCAT('\',EmployeeId,'\') AS varchar(1500)) AS Hierarchy
FROM HumanResources.Employee
WHERE ManagedByEmployeeId IS NULL
UNION ALL
SELECT Employee.EmployeeID, CAST(CONCAT(Hierarchy,Employee.EmployeeId,'\')
AS varchar(1500)) AS Hierarchy
FROM HumanResources.Employee
INNER JOIN EmployeeHierarchy
ON Employee.ManagedByEmployeeId = EmployeeHierarchy.EmployeeId
)
SELECT *
FROM EmployeeHierarchy;

	
Should read:
WITH EmployeeHierarchy AS
(
 SELECT EmployeeID, CAST(CONCAT('\',EmployeeId,'\') AS varchar(1500)) AS Hierarchy
 FROM Examples.Employee
 WHERE ManagerId IS NULL
 UNION ALL
 SELECT Employee.EmployeeID, CAST(CONCAT(Hierarchy,Employee.EmployeeId,'\')
 AS varchar(1500)) AS Hierarchy
 FROM Examples.Employee
 INNER JOIN EmployeeHierarchy
 ON Employee.ManagerId = EmployeeHierarchy.EmployeeId
)
SELECT *
FROM EmployeeHierarchy;
GO

	143
	Second code section
Reads:
FROM GAME
WHERE GameTime >= @SearchDate
AND GameTime < DATEADD(Day, 1, @SearchDate);
	
Should read:
FROM GAME
WHERE GameStartTime >= @SearchDate
AND GameStartTime < DATEADD(Day, 1, @SearchDate);

	158-159
	Last sentence, page 158
Reads:
DML TRIGGER objects are schema owned, database contained objects, like STORED PROCEDURE, VIEW, and CONSTRAINT objects, so their names must not collide with other objects in the database.
	Should Read:

DML TRIGGER objects are schema owned, database contained objects, like STORED PROCEDURE, VIEW, and CONSTRAINT objects, so their names must not collide with other objects in the same schema.

	160
	Last sentence of paragraph above the Note sidebar, “More on the Create Trigger Statement”
Reads:
This is not by any means an exhaustive list of ways that triggers can be used, but a simple overview of how they are be created to implement given needs.
	Should read:
This is not by any means an exhaustive list of ways that triggers can be used, but a simple overview of how they are created to implement given needs.

	164
	Top of page, 5th line of code
Reads:
HAVING SUM(CASE WHEN PrimaryContactFlag = 1 then 1 ELSE 0 END) > 1)
	Should read:

HAVING SUM(CASE WHEN PrimaryContactFlag = 1 then 1 ELSE 0 END) <> 1)

	170
	First paragraph below “Server” subheading
Reads:
In this example, the location of the database of the log table is important, because a SERVER DDL TRIGGER object is stored at the server level in the master database.
	Should read:

In this example, the database location of the log table is important, because a SERVER DDL TRIGGER object is stored at the server level in the master database.

	173
	2nd paragraph
Reads:
In this version of the trigger we are going to save off the DDL into a variable, do the ROLLBACK TRANSACTION, and then log the change (note that if the DDL statement is in an external transaction, the change is still logged because of the ROLLBACK TRANSACTION).
	Should read:
In this version of the trigger we are going to save off the DDL into a variable, do the ROLLBACK TRANSACTION, and then log the change (note that if the DDL statement is in an externally started transaction, the change is still logged because of the ROLLBACK TRANSACTION).

	178
	2nd paragraph
Reads:
In this case, the fourth set of outputs match the table contents.
	Should read:
In this case, the first set of outputs match the table contents.

	180
	Bottom of page, second to last code section
Reads:
SELECT Functions.ReturnInValue(1) as IntValue;
	
Should read:
SELECT Examples.ReturnInValue(1) as IntValue;

	181
	Listing 2-17, Line 7
Reads:
WITH RETURNS NULL ON NULL INPUT, --if all parameters NULL, return NULL immediately
	
Should read:
WITH RETURNS NULL ON NULL INPUT, --if any parameter NULL, return NULL immediately

	182
	First query line after “Consider the following two queries”
Reads:
SELECT CustomerID, Sales.Customers_ReturnOrderCount(905, DEFAULT)
	

Should read:
SELECT CustomerID, Sales.Customers_ReturnOrderCount(CustomerID, DEFAULT)

	188
	Last paragraph
Reads:
In UNIQUE constraints, they are treated as unique values.
	
Should read:
In UNIQUE constraints, they are treated as equal to other NULL values.

	190
	Second bulleted item
Reads:
The fifth should run no matter what, succeeding/failing independently.
	
Should read:
The third should run no matter what, succeeding/failing independently.

	204
	Note Sidebar: Need More Review? Batch-Scoped Transactions
Reads:
QL Server also supports batch-scoped transactions when Multiple Active Result Sets
	Should Read:

SQL Server also supports batch-scoped transactions when Multiple Active Result Sets

	226
	Last line on 2nd code section
Reads:
END TRANSACTION;
	AU: which one?
Should read:
COMMIT TRANSACTION; or ROLLBACK TRANSACTION;
Laurie – replace END TRANSACTION; with COMMIT TRANSACTION; thanks!

	238
	6th line, first code section
Reads:
UPDATE Examples.LockingB;
	
Should read:
UPDATE Examples.LockingB

	238
	6th line, second code section
Reads:
UPDATE Examples.LockingA;
	
Should read:
UPDATE Examples.LockingA

	246
	Listing 3-11
Reads:L

	Description of error: The CustomerCode columns are NVARCHAR(5), yet, when the two tables created here are used on page 250 - Listing 3-13, they are required to be NVARCHAR(10), or the statements will return thousands of truncation errors.

	253
	First heading
Reads:
Offlload analytics to readable secondary
	
Should read:
Offload analytics to readable secondary

	257
	Last 4 lines
Reads:
DECLARE @ncspid int;
DECLARE @dbid int;
EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value = 0,
 @database_id = @dbid, @xtp_object_id = @ncspid;
	
Should read:
DECLARE @ncspid int;
 DECLARE @dbid int;
 SET @ncspid = OBJECT_ID(N'Examples.OrderInsert_NC');
 SET @dbid = DB_ID(N'ExamBook762Ch3_IMOLTP');
EXEC sys.sp_xtp_control_query_exec_stats @new_collection_value = 0,
 @database_id = @dbid, @xtp_object_id = @ncspid;

	271
	1st paragraph, sentence before bulleted list
Reads:
In most cases, as illustrated by the previous example, you should allow SQL Server to create and update statistics automatically by setting one of the following database options, each of which is enabled by default:
	
Should read:
In most cases, as illustrated by the previous example, you should allow SQL Server to create and update statistics automatically by setting one of the following database options - The first and third of which are enabled by default:

	280
	2nd bulleted item
Reads:
Use this DMV as an intermediary between sys.dm_db_index_details and sys.dm_db_missing_group_stats.
	
Should read:
Use this DMV as an intermediary between dm_db_missing_index_details and sys.dm_db_missing_group_stats.

	285
	1st paragraph after code section
Reads:
In Object Explorer, expand the Management node, expand the Sessions node, right click ActualQueryPlans, and select Watch Live Data.
	
Should read:
In Object Explorer, expand the Management node, expand the Extended Events node, expand the Sessions node, right click ActualQueryPlans, and select Watch Live Data.

	291
	1st sentence after Figure 4-6
Reads:
After enabling a trace, you can run a query against the WideWorldImporters database, such as the one shown in Listing 4-15.
	Should read:
After enabling a trace, you can run a query against the WideWorldImporters database, such as the one shown in Listing 4-6.

	300
	Bottom of page:
Reads:
After adding the indexes, execute the following query to see the new query plan, as shown
in Figure 4-18:
SELECT
si.StockItemName,
c.ColorName,
s.SupplierName
FROM Warehouse.StockItems si
INNER JOIN Warehouse.Colors c ON
c.ColorID = si.ColoriD
INNER JOIN Purchasing.Suppliers s ON
s.SupplierID = si.SupplierID; After adding the indexes, execute the following query to see the new query plan, as shown
in Figure 4-18:
SELECT
si.StockItemName,
c.ColorName,
s.SupplierName
FROM Warehouse.StockItems si
INNER JOIN Warehouse.Colors c ON
c.ColorID = si.ColoriD
INNER JOIN Purchasing.Suppliers s ON
s.SupplierID = si.SupplierID;
	
Should read:
After adding the indexes, execute the following query to see the new query plan, as shown
in Figure 4-18:
SELECT
si.StockItemName,
c.ColorName,
s.SupplierName
FROM Warehouse.StockItems si
INNER JOIN Warehouse.Colors c ON
c.ColorID = si.ColoriD
INNER JOIN Purchasing.Suppliers s ON
s.SupplierID = si.SupplierID;

[i.e. remove duplicate text]

	301
	Last line of second to last paragraph
Reads:
(Inner Join) operators shown in Figure 4-17.Create efficient query plans using Query Store
	
Should Read:
(Inner Join) operators shown in Figure 4-17.
AND
“Create efficient query plans using Query Store” should be formatted as subheading to next paragraph.

	304
	Listing 4-22
Reads:
--Option 1: Use the ALTER DATABASE statement
ALTER DATABASE <databasename>
SET QUERY_STORE CLEAR ALL;
GO
--Option 2: Use a system stored procedure
EXEC sys.sp_query_store_flush_db;
GO
	
Should read:
--Use the ALTER DATABASE statement
ALTER DATABASE <databasename>
SET QUERY_STORE CLEAR ALL;
GO

	305
	Title of Listing 4-23
Reads
Top 5 queries with highest average logical reads
	
Should read:
Top query with highest average logical reads

	328
	Listing 4.34, 10th line
Reads:
USING "poolExamBookNighttime";
	
Should read:
USING "poolExamBookDaytime";

	329
	Listing 4.36
Reads:
WHERE TimeStart <= @loginTime and TimeEnd >= @loginTime
	Laurie – not sure what the question is here, but I do know that you would replace the single line with these 7 lines of code. Let me know if you have other specific questions, thanks!
Should read:
WHERE
 -- Interval does not overlap midnight
 TimeStart <= @loginTime and TimeEnd > @loginTime
 -- Interval overlaps midnight and session starts before midnight and within the interval
 OR (TimeStart <= @loginTime and TimeEnd < TimeStart)
 -- Interval overlaps midnight and session starts after midnight and within the interval
 OR (TimeEnd > @loginTime and TimeEnd < TimeStart)

	349
	Bottom, second bulleted item
Reads:
PhysicalDisk: Avg. Disk sec/Read Average read latency in seconds. This value should be less than 0.20.
	
Should read:
 PhysicalDisk: Avg. Disk sec/Read Average read latency in seconds. This value should be less than 0.020.

	350
	Top, first bulleted item
Reads:
PhysicalDisk: Avg. Disk sec/Write Average read latency of IO requests to the disk
	
Should read:
PhysicalDisk: Avg. Disk sec/Write Average write latency of IO requests to the disk

Corrections for May 5, 2017
	Pages
	Error-1st Printing
	Correction

	34
	paragraph below Figure 1-4, third sentence
Reads:
SQL Server now uses the index-seek operation to find the six matching rows, but all it has are the CustomerID and the OrderID from the index keys.

	 Should Read:
SQL Server now uses the index-seek operation to find the six matching rows, but all it has are the CustomerPurchaseOrderNumber and the OrderID from the index keys.

	35
	Second sentence
Reads:
You can tell if a column can be indexed, even if it is computed by using the COLUMNPROPERTYEX() function:

	 Should Read:
You can tell if a column can be indexed, even if it is computed by using the COLUMNPROPERTYEX function:

	49
	Listing 1-1, first four lines
Reads:
--2074 Rows
SELECT *
INTO Examples.PurchaseOrders
FROM WideWorldImporters.Purchasing.PurchaseOrders;

	 Should Read:
CREATE SCHEMA Examples AUTHORIZATION dbo;
GO
--2074 Rows
SELECT *
INTO Examples.PurchaseOrders
FROM WideWorldImporters.Purchasing.PurchaseOrders;

	52
	third bullet
Reads:
Encrypts the entry in sys.syscomments that contains the text of the VIEW create statement.

	Should Read:
Encrypts the text of the VIEW object.

	52
	first bullet (Schema binding), last sentence
Reads:

Columns, not references can be removed, or new columns added.
	Should Read:
Columns not referenced can be removed, or new columns added.

	58
	Listing 1-6, fourth line
Reads:
UPPER(GadgetType) AS UpperGadgedType

	 Should Read:
UPPER(GadgetType) AS UpperGadgetType

	59
	code after 3rd paragraph, 2nd and 3rd line of code
Reads:
replace curly quotes in code with straight quotes
VALUES (4,’00000004’,’Electronic’,’XXXXXXXXXX’), --row we can see in view
(5,’00000005’,’Manual’,’YYYYYYYYYY’); --row we cannot see in view

	 Should Read:
 Replace curly quotes in above code with straight quotes

	89
	Bottom, Listing 1-18
 [On the first line of Listing 1-18 there's a dot at the first character]
Reads:
 .CREATE TABLE [Fact].[SaleLimited](
	Should Read:
 CREATE TABLE [Fact].[SaleLimited](

	99
	Last sentence before bullets
Reads:

- The CREATE CLUSTERED COLUMNSTORE INDEX will expectadly fail with the following message:
 Msg 35372, Level 16, State 3, Line 10

	Should Read:
- The CREATE CLUSTERED COLUMNSTORE INDEX will expectedly fail with the following message:
 Msg 35372, Level 16, State 3, Line 10
And:
Add note below to the CREATE CLUSTERED COLUMNSTORE INDEX bullet on page 100:
Note that you would need to change the PRIMARY KEY constraint to nonclustered for this one to work.

	100
	Last sentence
Reads:
It works nicely with the PRIMARY KEY constraint index to allow singleton updates/seeks as needed for ETL and simple queries also.
Yet:
- The PRIMARY KEY constraint is assumed to have caused the creation of a clustered index as it is included on the CREATE TABLE
- The CREATE CLUSTERED COLUMNSTORE INDEX will fail:
 Msg 35372, Level 16, State 3, Line 10
 You cannot create more than one clustered index on table 'Sales.InvoiceItemFact'. Consider creating a new clustered index using 'with (drop_existing = on)' option.
	Add sentence after this one:

Remember, you have changed the PRIMARY KEY constraint to nonclustered for this to work.

	106
	Middle – second bullet
Reads:

The columns of the key allow NULL values (NULL values are treated as distinct values, ...)

	Should Read:
The columns of the key allow NULL values (yet, quite unusually, NULL values are treated as equal on this case)

	106
	After middle of page
Reads:
Now, an attempt to insert a row with the duplicated tag value of G001:
INSERT INTO Equipment.Tag(Tag, TagCompanyId)
VALUES ('G001',1);

	Should Read:

Now, an attempt to insert a row with the duplicated GadgetCode value of Gadget:
INSERT INTO Examples.Gadget(GadgetCode)
VALUES ('Gadget');

	113
	First line
Reads:

 ALTER TABLE Alt.TwoPartKeyReference

	Should Read:
 ALTER TABLE Examples.TwoPartKeyReference

	121
	Middle
[There's an extra space between the database schema name and the table name]

Reads:
ALTER TABLE Examples. Attendee
	 Should Read
 ALTER TABLE Examples.Attendee

	124
	9th line
Reads:
CHECK ScenarioTestType IN ('Type1','Type2'))

	
Should Read:
 CHECK (ScenarioTestType IN ('Type1','Type2'))

	222
	 “Repeatable Read section,” first sentence
Reads:
The behavior of the REPEATABLE READ isolation level is much like that of READ COMMITTED, except that it ensures that multiple reads of the same data within a transaction is consistent.

	
Should Read:
The behavior of the REPEATABLE READ isolation level is much like that of READ COMMITTED, except that it ensures that multiple reads of the same data within a transaction are consistent.

	222
	“Repeatable Read section,” bottom, last paragraph before code
Reads:
In this case, the first read operations blocks the update operation, which executes when the first read’s locks are released, the update commits the data change, but the second query returns the same rows as the first query due to the isolation level of the transaction:

	
Should Read:
In this case, the first read operation blocks the update operation, which executes when the transaction's locks are released. The update in the second session commits the data change after the transaction. Both queries in the first session return the same results because the update occurs after the transaction ends:

	223
	Top, above the “Serializable” heading

	Add new paragraph:
If you were to execute an INSERT statement in the second session instead, the first and second queries in the first session return different results by including the new rows in the second query. The isolation level prevents changes to existing data, but allows the insertion of new data.

This errata sheet is intended to provide updated technical information. Spelling and grammar misprints are updated during the reprint process, but are not listed on this errata sheet.
Updated 04/28/2017
image1.png
Ppescription Duration

Disk-based table and interprated stored procedure: 10440 ms

Description Duration

Memory-optinized table and interpreted stored procedure: 10041 ms

Description Duration

Memory-optinized table and natively compiled stored procedura: 1885 ms

