| earn

PYTHON

the

THIRD EDITION

FREE SAMPLE CHAPTER

SHARE WITH OTHERS
80860608

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321884916
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321884916
https://plusone.google.com/share?url=http://www.informit.com/title/9780321884916
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321884916
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321884916/Free-Sample-Chapter

LEARN PYTHON
THE HARD WAY

Third Edition

Zed Shaw’s Hard Way Series

AVery Simple Introduction to
the Terrifyingly Beautiful We

Computers and
~

ZED A. SHAW

vv Addison-Wesley

Visit informit.com/hardway for a complete list of available publications.

ed Shaw’s Hard Way Series emphasizes instruction and making things as
Zthe best way to get started in many computer science topics. Each book in the
series is designed around short, understandable exercises that take you through
a course of instruction that creates working software. All exercises are thoroughly
tested to verify they work with real students, thus increasing your chance of
success. The accompanying video walks you through the code in each exercise.
Zed adds a bit of humor and inside jokes to make you laugh while you're learning.

ey

Make sure to connect with us!
informit.com/socialconnect

informit.com | . Addison-Wesley | Safari

the trusted technology learning source ooks Online

ALWAYS LEARNING PEARSON

LEARN PYTHON
THE HARD WAY

A Very Simple Introduction
to the Terrifyingly Beautiful World
of Computers and Code

Third Edition

Zed A. Shaw

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston e Indianapolis ® San Francisco
New York e Toronto ¢ Montreal ¢ London e Munich e Paris ¢ Madrid
Capetown e Sydney e Tokyo e Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Shaw, Zed.

Learn Python the hard way : a very simple introduction to the terrifyingly beautiful world of computers and
code / Zed A. Shaw.—Third edition.

pages cm

Includes index.

ISBN 978-0-321-88491-6 (paperback : alkaline paper)

1. Python (Computer program language) 2. Python (Computer program language)—Problems, exercises,
etc. 3. Computer programming—Problems, exercises, etc. |. Title.

QA76.73.P98553 2014

005.13'3—dc23

2013029738

Copyright © 2014 Zed A. Shaw

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may
fax your request to (201) 236-3290.

ISBN-13: 978-0-321-88491-6
ISBN-10: 0-321-88491-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Fifth printing, July 2014

Contents

Preface 1
Acknowledgments 1
The Hard Way IsEasier. 1

Readingand Writing. 2
AttentiontoDetail 2
Spotting Differences 2
Do NotCopy-Pastet 2
Using the Included Videos i 3
A Word of Advice for “Visual Learners” 3
A Note on Practice and Persistence., 3
A Warning forthe Smarties. o i 4

Exercise 0 The Setup.t 6

Mac O X . 6
OSX: What You Should See. i, 7
WiINAOWS . . oot e e e 7
Windows: What You ShouldSee 8
LiNUX .o 9
Linux: What You Should See., 10
Warnings for Beginners 10

Exercise 1 A Good FirstProgram 12
What You Should See. 14
Study Drills ..o 15
Common Student Questions i 16

Exercise 2 Comments and Pound Characters 18
What You Should See. 18
Study Drills . ..o e 18
Common Student Questions i 19

Exercise 3 NumbersandMath 20
What You Should See. 21
Study Drills ..o 21

Common Student Questions 22

Vi CONTENTS

Exercise 4 Variablesand Names........... 24
What You Should See. i 25
Study Drills ..o 25
Common Student Questions 25

Exercise 5 More Variables and Printing. 28
What You Should See. 28
Study Drills .. oo 29
Common Student Questions 29

Exercise 6 Stringsand Text., 30
What You Should See. 31
Study Drills .. .o 31
Common Student Questions 31

Exercise 7 More Printing.o 32
What You Should See. ... 32
Study Drills ..o 32
Common Student Questions 33

Exercise 8 Printing, Printing.......... i 34
What You Should See. 34
Study Drills .. oo 34
Common Student Questions 34

Exercise 9 Printing, Printing, Printing 36
What You Should See. i 36
Study Drills .. oo 36
Common Student Questions i 37

Exercise 10 What WasThat? i 38
What You Should See. 39
Escape Sequences 39
Study Drills .. oo 40
Common Student Questions i 40

Exercise 11 Asking Questions.t 42
What You Should See. 42
Study Drills .. oo 43

Common Student Questions i, 43

CONTENTS vii
Exercise 12 Prompting People i 44
What You Should See. 44
Study Drills . ..o e 44
Common Student Questionst 45
Exercise 13 Parameters, Unpacking, Variables 46
Hold Up! Features Have AnotherName 46
What You Should See. 47
Study Drills ..o 48
Common Student Questions i 48
Exercise 14 Promptingand Passingcooiiuion... 50
What You Should See. 50
Study Drills . ..o e 51
Common Student Questions i 51
Exercise 15 Reading Files i 54
What You Should See. 55
Study Drills ..o 55
Common Student QuUestions 56
Exercise 16 Reading and Writing Files. 58
What You Should See. 59
Study Drills .. oo 59
Common Student Questions 60
Exercise 17 MoreFiles. il 62
What You Should See. 63
Study Drills . ..o e 63
Common Student Questionsot 63
Exercise 18 Names, Variables, Code, Functions. 66
What You Should See. 67
Study Drills .. .o 68
Common Student Questions i 68
Exercise 19 Functions and Variables 70
What You Should See. 71
Study Drills ..o 71

Common Student Questions 71

viii CONTENTS

Exercise 20 Functionsand Files 74
What You Should See. i 75
Study Drills .. oo 75
Common Student Questions 75

Exercise 21 Functions Can Return Something..................... 78
What You Should See. i 79
Study Drills ..o 79
Common Student Questions 80

Exercise 22 What Do You Know SoFar? 81
What You Are Learningot 81

Exercise 23 Read Some Codet 82

Exercise 24 More Practice.ot 84
What You Should See. 85
Study Drills . ..o 85
Common Student QUESLIONSttt e 85

Exercise 25 Even More Practice 86
What You Should See. 87
Study Drills ..o 88
Common Student Questions 89

Exercise 26 Congratulations, TakeaTest!........................ 90
Common Student Questions 90

Exercise 27 Memorizing LogiC oot 92
The Truth Terms s 92
The Truth Tables 93
Common Student Questions i 94

Exercise 28 Boolean Practice, 96
What You Should See. i 98
Study Drills .. oo 98
Common Student Questions 98

Exercise 29 What If 100
What You Should See. 100
Study Drills . ..o e 101

Common Student QUESEIONSttt e 101

CONTENTS ix
Exercise 30 Elseand If. 102
What You Should See......... 103
Study Drills . ..o e 103
Common Student Questions 103
Exercise 31 Making Decisions.t 104
What You Should See.......... ... i 105
Study Drills ..o 105
Common Student Questions i 105
Exercise 32 Loopsand Lists.t 106
What You Should See. 107
Study Drillso 108
Common Student Questionsc.. it 108
Exercise 33 While-Loops.o 110
What You Should See......... 111
Study Drills . ..o e 111
Common Student Questions 112
Exercise 34 Accessing Elementsof Lists. 114
Study Drills . ..o e 115
Exercise 35 Branches and Functions. 116
What You Should See.......... i 117
Study Drills ..o 118
Common Student QuUestionsciiriii. 118
Exercise 36 Designing and Debugging 120
Rules for If-Statements. i 120
RuUles fOr LOOPS . . oo v vt e 120
Tips for Debugging.o 121
Homework.o 121
Exercise 37 Symbol Review. i 122
Keywords. 122
Data TYPeS. . vttt e 123
String Escape SequUeNnCes.t 124
String Formats. 124

OPerators . ..o s 125

X

CONTENTS

Reading Codettt 126
Study Drills ..o 127
Common Student Questions, 127
Exercise 38 Doing Thingsto Lists. 128
What You Should See.......... i 129
Study Drills . ..o 130
Common Student Questions i, 130
Exercise 39 Dictionaries, Oh Lovely Dictionaries. 132
What You Should See. i 134
Study Drills ..o 135
Common Student Questions i, 135
Exercise 40 Modules, Classes, and Objects 138
Modules Are Like Dictionaries. 138
Classes Are Like Modules iiin... 139
Objects Are Like Mini-lmportso, 140
Getting Things from Things i, 141
AFirst-Class Example. e 141
What You Should See........o 142
Study Drills . ..o e 142
Common Student Questions, 143
Exercise 41 Learning to Speak Object Oriented 144
Word Drills 144
Phrase Drills. o 144
Combined Drills.o 145
AReading Test . ..ottt 145
Practice Englishto Code.o 147
ReadingMore Codet 148
Common Student Questions 148
Exercise 42 Is-A, Has-A, Objects, and Classes. 150
How This LooksinCodeo, 151
About class Name(object). 153
Study Drills . ..o e 153

Common Student Questions i, 154

CONTENTS Xi

Exercise 43 Basic Object-Oriented Analysis and Design............ 156
The Analysis of a Simple Game Engine 157
Write or Draw about the Problem 157
Extract Key Concepts and Research Them 158
Create a Class Hierarchy and Object Map for the Concepts. ... 158

Code the Classes and a TesttoRun Them 159
Repeatand Refine........ i 161
TopDownvs.BottomUp............ . 161
The Code for “Gothons from Planet Percal #25" 162
What You Should See......... i 167
Study Drills ..o 168
Common Student Questions i 168
Exercise 44 Inheritance vs. Composition........................ 170
Whatis Inheritance?. 170
Implicit Inheritance 171
Override Explicitly 172

Alter Before or After. i 172

All Three Combined. i 174

The Reason forsuper()..........coouiii .. 175
Using super() with __init__ 175
ComPOSItIoN . .. o e 176
When to Use Inheritance or Composition. 177
Study Drills ..o 177
Common Student Questionst 178
Exercise 45 You MakeaGame.............. it 180
Evaluating Your Game 180
Function Style 181
Class Style ..o e 181
Code Style . .. o 182
GoOod COMMENTS . . .o ottt ittt e et 182
Evaluate Your Game. ot 183
Exercise 46 A ProjectSkeleton....... 184
Installing Python Packages. i, 184

Creating the Skeleton Project Directory 185

xii CONTENTS

Final Directory Structure.t 186
Testing Your Setupo 187
Using the Skeleton 188
Required QUIz.ot e 188
Common Student Questions, 189
Exercise 47 Automated Testing i, 190
WritingaTest Caseottt 190
Testing Guidelines. 192
What You Should See........ i 192
Study Drillso 193
Common Student Questions, 193
Exercise 48 Advanced Userlnput. 194
Our Game LexiCon s 194
BreakingUp aSentence i 195
Lexicon TUPIES . . oot e 195
Scanning Input. 195
Exceptionsand Numbers. 196
What You Should Test 196
Design HiNts e e 198
Study Drills . ..o 198
Common Student Questions 198
Exercise 49 Making Sentences 200
Matchand Peek i 200
The Sentence Grammarttt e e 201

A Word on EXCePtionso vttt e 203
What You Should Test 204
Study Drills ..o 204
Common Student Questions i 204
Exercise 50 Your First Website 206
Installing Ipthw.web.o 206
Make a Simple “Hello World” Project. 207
What's GOINg ON?. . ..ot e 208

CONTENTS xiii

Create Basic Templates. i 209
Study Drills ... 211
Common Student Questionst 211
Exercise 51 Getting Input fromaBrowser 214
How the Web Works. i 214
How FormsWork 216
Creating HTML FOrms.o e 218
Creating alayout Template. 220
Writing Automated Tests for Forms 221
Study Drills . ..o e 223
Common Student Questions i 224
Exercise 52 The Start of Your Web Game 226
Refactoring the Exercise 43 Game., 226
Sessions and Tracking Users 231
Creatingan Engine. i 232
Your Final Exam 235
Common Student Questions 236
NexXt Stepso 237
How to Learn Any Programming Language................... 238
Advice from an Old Programmer ou... 241
Appendix Command Line CrashCoursecuu... 243
Introduction: Shut Upand Shell 243
How to Use This AppendiX, 243

You Will Be Memorizing Things 244
Exercise T: The Setupt e e 245
Do This .. o 245
YoulLearned This.o 246

Do MoOre. .. e 246
Exercise 2: Paths, Folders, Directories (pwd)................... 248
Do This .. o 248
YoulLearned This.ottt 249

Do MOre. .. e 249

xiv CONTENTS

DO TNIS . oot 250
You Learned This.o 250
Exercise 4: Make a Directory (mkdir)......... 250
DO TNIS . oottt 250
You Learned This.o i 252
DO MOre . . e 252
Exercise 5: Change Directory (cd).o 252
DO TNIS oot 252
You Learned This.o 255
DO MOre . . 255
Exercise 6: List Directory (IS)o 256
DO TNIS oottt 256
You Learned This.o e 259
DO MOrE . 260
Exercise 7: Remove Directory (rmdir). 260
DO ThIS oot 260
You Learned Thisot e 262
Do MoOre . .. e 262
Exercise 8: Move Around (pushd, popd) 262
DO ThiS oot 263
You Learned Thisot et 264
DO MOrE . o e 265
Exercise 9: Make Empty Files (Touch, New-Item) 265
DO This . oo 265
You Learned Thist et 266
DO MOre . . e 266
Exercise 10: Copy aFile (Cp) -« - oo v i ei i 266
DO TNIS . oottt 266
You Learned This.o i 268
DO MOre . . e 269
Exercise 11: Move a File (mv)o 269
DO TNIS oottt 269
You Learned This.o 271

Do MoOre. ... e 271

CONTENTS

XV

Exercise 12: View a File (less, MORE) 271
DO ThiS . .o e 271
You Learned This.ot e 272
DO MOrE . ot 272

Exercise 13: Stream aFile (cat). 272
DO ThiS . .o e 272
You Learned This.t 273
DO MOrE . ot 273

Exercise 14: Remove aFile(rm) 273
DO ThiS . .ot 273
You Learned This i 275
DO MOrE . o e 275

Exercise 15: Exit Your Terminal (exit). 275
DO ThiS . .o e 275
Youlearned This. e 276
Do MoOre . .. 276

Command Line Next Steps.ot 276
Unix Bash References 276
PowerShell References 277

This page intentionally left blank

Preface

his simple book is meant to get you started in programming. The title says it's the hard way to

learn to write code, but it's actually not. It's only the “hard” way because it uses a technique
called instruction. Instruction is where | tell you to do a sequence of controlled exercises designed
to build a skill through repetition. This technique works very well with beginners who know noth-
ing and need to acquire basic skills before they can understand more complex topics. It's used in
everything from martial arts to music to even basic math and reading skills.

This book instructs you in Python by slowly building and establishing skills through techniques like
practice and memorization, then applying them to increasingly difficult problems. By the end of
the book, you will have the tools needed to begin learning more complex programming topics. |
like to tell people that my book gives you your “programming black belt.” What this means is that
you know the basics well enough to now start learning programming.

If you work hard, take your time, and build these skills, you will learn to code.

Acknowledgments

I would like to thank Angela for helping me with the first two versions of this book. Without her,
| probably wouldn’t have bothered to finish it at all. She did the copy editing of the first draft and
supported me immensely while | wrote it.

I'd also like to thank Greg Newman for doing the cover art for the first two editions, Brian Shu-
mate for early website designs, and all the people who read previous editions of this book and
took the time to send me feedback and corrections.

Thank you.

The Hard Way s Easier

With the help of this book, you will do the incredibly simple things that all programmers do to
learn a programming language:

1. Go through each exercise.
2. Type in each sample exactly.

3. Make it run.

That's it. This will be very difficult at first, but stick with it. If you go through this book and do each
exercise for one or two hours a night, you will have a good foundation for moving on to another

2 LEARN PYTHON THE HARD WAY

book. You might not really learn “programming” from this book, but you will learn the founda-
tion skills you need to start learning the language.

This book’s job is to teach you the three most essential skills that a beginning programmer needs
to know: reading and writing, attention to detail, and spotting differences.

Reading and Writing

It seems stupidly obvious, but if you have a problem typing, you will have a problem learning to
code. Especially if you have a problem typing the fairly odd characters in source code. Without
this simple skill, you will be unable to learn even the most basic things about how software works.

Typing the code samples and getting them to run will help you learn the names of the symbols,
get you familiar with typing them, and get you reading the language.

Attention to Detail

The one skill that separates bad programmers from good programmers is attention to detail. In
fact, it's what separates the good from the bad in any profession. Without paying attention to the
tiniest details of your work, you will miss key elements of what you create. In programming, this
is how you end up with bugs and difficult-to-use systems.

By going through this book and copying each example exactly, you will be training your brain to
focus on the details of what you are doing, as you are doing it.

Spotting Differences

A very important skill—which most programmers develop over time—is the ability to visually
notice differences between things. An experienced programmer can take two pieces of code
that are slightly different and immediately start pointing out the differences. Programmers have
invented tools to make this even easier, but we won't be using any of these. You first have to train
your brain the hard way—then you can use the tools.

While you do these exercises, typing each one in, you will make mistakes. It's inevitable; even seasoned
programmers make a few. Your job is to compare what you have written to what's required and fix
all the differences. By doing so, you will train yourself to notice mistakes, bugs, and other problems.

Do Not Copy-Paste

You must type each of these exercises in, manually. If you copy and paste, you might as well just
not even do them. The point of these exercises is to train your hands, your brain, and your mind

PREFACE 3

in how to read, write, and see code. If you copy-paste, you are cheating yourself out of the effec-
tiveness of the lessons.

Using the Included Videos

Included in the third edition of Learn Python The Hard Way is more than five hours of instruc-
tional videos. There is one video for each exercise where | either demonstrate the exercise or give
you tips for completing the exercise. The best way to use the videos is to attempt or complete the
exercises without them first, then use the videos to review what you learned or if you are stuck.
This will slowly wean you off of using videos to learn programming and will build your skills at
understanding code directly. Stick with it, and over time you won't need these videos, or any
videos, to learn programming. You'll be able to just read for the information you need.

A Word of Advice for “Visual Learners”

Your belief that you are “only” a visual learner is potentially holding you back in your educational
goals. The idea that a person could only possibly learn from one of their senses is preposterous. It
is possible to learn to use all of your senses when tackling a complex subject such as programming.
If you've locked yourself in the visual- or kinetic-learner prison your whole life, then this book is a
great way to break out of it and build up your analytic skills.

By first attempting each exercise from the book, you will build your skills at analytic thinking, skills
which most likely you already have but have simply forgotten how to use effectively. However,
when you get stuck, grab the video for that exercise and use your ability to process visual informa-
tion to help. In fact, finding ways to apply all of your sense to a given difficult problem will give
you new insights into that problem no matter how strange it may seem at first.

A Note on Practice and Persistence

While you are studying programming, I'm studying how to play guitar. | practice it every day for
at least two hours a day. | play scales, chords, and arpeggios for an hour at least and then learn
music theory, ear training, songs, and anything else | can. Some days | study guitar and music for
eight hours because | feel like it and it's fun. To me, repetitive practice is natural and is just how
to learn something. | know that to get good at anything you have to practice every day, even if
I suck that day (which is often) or it's difficult. Keep trying and eventually it’ll be easier and fun.

As you study this book and continue with programming, remember that anything worth doing
is difficult at first. Maybe you are the kind of person who is afraid of failure, so you give up at
the first sign of difficulty. Maybe you never learned self-discipline, so you can’t do anything that'’s
“boring.” Maybe you were told that you are “gifted,” so you never attempt anything that might

4 LEARN PYTHON THE HARD WAY

make you seem stupid or not a prodigy. Maybe you are competitive and unfairly compare yourself
to someone like me who's been programming for 20+ years.

Whatever your reason for wanting to quit, keep at it. Force yourself. If you run into a Study Drill
you can‘t do or a lesson you just do not understand, then skip it and come back to it later. Just keep
going because with programming there’s this very odd thing that happens. At first, you will not
understand anything. It'll be weird, just like with learning any human language. You will struggle
with words and not know what symbols are what, and it'll all be very confusing. Then one day—
BANG—your brain will snap and you will suddenly “get it.” If you keep doing the exercises and
keep trying to understand them, you will get it. You might not be a master coder, but you will at
least understand how programming works.

If you give up, you won't ever reach this point. You will hit the first confusing thing (which is
everything at first) and then stop. If you keep trying, keep typing it in, trying to understand it and
reading about it, you will eventually get it.

But if you go through this whole book and you still do not understand how to code, at least you
gave it a shot. You can say you tried your best and a little more and it didn't work out, but at least
you tried. You can be proud of that.

A Warning for the Smarties

Sometimes people who already know a programming language will read this book and feel I'm
insulting them. There is nothing in this book that is intended to be interpreted as condescending,
insulting, or belittling. | simply know more about programming than my intended readers. If you
think you are smarter than me, then you will feel talked down to and there’s nothing | can do
about that because you are not my intended reader.

If you are reading this book and flipping out at every third sentence because you feel I'm insulting
your intelligence, then | have three points of advice for you:

1. Stop reading my book. | didn‘t write it for you. | wrote it for people who don't already
know everything.

2. Empty before you fill. You will have a hard time learning from someone with more
knowledge if you already know everything.

3. Go learn Lisp. | hear people who know everything really like Lisp.

For everyone else who's here to learn, just read everything as if I'm smiling and | have a mischie-
vous little twinkle in my eye.

This page intentionally left blank

12

A Good First Program

Remember, you should have spent a good amount of time in Exercise 0, learning how to install
a text editor, run the text editor, run the Terminal, and work with both of them. If you haven't
done that, then do not go on. You will not have a good time. This is the only time I'll start an
exercise with a warning that you should not skip or get ahead of yourself.

Type the following text into a single file named ex1.py. This is important, as Python works best
with files ending in . py.

exl.py

print "Hello World!"

print "Hello Again"

print "I 1like typing this."

print "This is fun."

print 'Yay! Printing.'

print "I'd much rather you 'not'."
print 'I "said" do not touch this.'

Nouvih wWwN R

If you are on Mac OSX, then this is what your text editor might look like if you use TextWrangler:

eno0 L] ex1l.py
"8 I Last Saved: 6/12/11 9:40:26 PM
= *_/? @ 0 |j File Path » : ~/projects/books /learn-python-the-hard-way/ex/ex1.py
| 4| » oY exl.py +| (nosymbol selected) = L - # 2

[print "Hello World!"

print "Hello Again”

print "I like typing this."

print "This is fun."

print "Yay! Printing.’

print "I'd much rather you 'not'."
print 'I "said" do not touch this.'

1]1 [Pythan * | Unicode (UTF-8) = |Unix(LF) =| | 186 /31 /10| 7

A GOOD FIRST PROGRAM 13

If you are on Windows using Notepad++, then this is what it would look like:

[C\Users\zed\lpthw\ex.py - Notepad++
File Edit Search View Encoding Language 5ettings Macre Run Plugins Window 7

sHEE 2 Ga8lshDlpelnyl s BRISTERICEDRE]
Eeﬂ.p}'l

G . T BT S VI R

wom

ar

Pytt length :193 lines: 9 Ln:1 Col:1 Sel:D Dos\Windows AMNSI INS

Don't worry if your editor doesn’t look exactly the same; the key points are as follows:

1. Notice I did not type the line numbers on the left. Those are printed in the book so I can
talk about specific lines by saying, “See line 5. .."” You do not type those into Python
scripts.

2. Notice | have the print at the beginning of the line and how it looks exactly the same
as what | have above. Exactly means exactly, not kind of sort of the same. Every single
character has to match for it to work. But the colors are all different. Color doesn’t mat-
ter; only the characters you type.

Then in Terminal, run the file by typing:

python exl.py

If you did it right, then you should see the same output | have below. If not, you have done some-
thing wrong. No, the computer is not wrong.

14 LEARN PYTHON THE HARD WAY

What You Should See

On Max OSX in the Terminal, you should see this:

800 ex — bash — 81x21 e

On Windows in PowerShell, you should see this:

24 Windows PowerShell =8 B!
7

PE C:slUsersszedslpthw? python exl.py

fun.
Yay?! Printing.
I'd much rather you ’‘not’.
I "said" do not touch this.
PE GC:sUsersszedslpthu?

A GOOD FIRST PROGRAM 15

You may see different names, the name of your computer or other things, before the python ex1.py,
but the important part is that you type the command and see the output is the same as mine.

If you have an error, it will look like this:

$ python ex/exl.py
File "ex/exl.py", line 3
print "I like typing this.
A

SyntaxError: EOL while scanning string literal

It's important that you can read these, since you will be making many of these mistakes. Even |
make many of these mistakes. Let’s look at this line by line.

1. Here we ran our command in the Terminal to run the ex1.py script.
2. Python then tells us that the file ex1.py has an error on line 3.

3. It then prints this line for us.
4

Then it puts a A (caret) character to point at where the problem is. Notice the missing "
(double-quote) character?

5. Finally, it prints out a SyntaxError and tells us something about what might be the error.
Usually these are very cryptic, but if you copy that text into a search engine, you will find
someone else who's had that error and you can probably figure out how to fix it.

WARNING! If you are from another country and you get errors about ASCIl encodings,
then put this at the top of your Python scripts:

-*- coding: utf-8 -*-

It will fix them so that you can use Unicode UTF-8 in your scripts without a problem.

Study Drills

Each exercise also contains Study Drills. The Study Drills contain things you should try to do. If you
can't, skip it and come back later.

For this exercise, try these things:

1. Make your script print another line.
2. Make your script print only one of the lines.

3. Puta "#" (octothorpe) character at the beginning of a line. What did it do? Try to find
out what this character does.

16 LEARN PYTHON THE HARD WAY

From now on, | won't explain how each exercise works unless an exercise is different.

NOTE: An “octothorpe” is also called a “pound,” “hash,” “mesh,” or any number of
names. Pick the one that makes you chill out.

Common Student Questions

These are actual questions by real students in the comments section of the book when it was
online. You may run into some of these, so I've collected and answered them for you.

Can | use IDLE?
No, you should use Terminal on OSX and PowerShell on Windows, just like | have here. If you don’t
know how to use those, then you can go read the Command Line Crash Course in the appendix.

How do you get colors in your editor?
Save your file first as a . py file, such as ex1.py. Then you'll have color when you type.

I get SyntaxError: invalid syntax when | run ex1.py.
You are probably trying to run Python, then trying to type Python again. Close your Terminal, start
it again, and right away type only python ex1.py.

Igetcan't open file 'exl.py': [Errno 2] No such file or directory.

You need to be in the same directory as the file you created. Make sure you use the cd command to
go there first. For example, if you saved your file in Tpthw/ex1.py, then you would do cd Tpthw/
before trying to run python ex1.py. If you don’t know what any of that means, then go through
the Command Line Crash Course (CLI-CC) mentioned in the first question.

How do | get my country’s language characters into my file?
Make sure you type this at the top of your file: # -*- coding: utf-8 -*-.

My file doesn’t run; I just get the prompt back with no output.

You most likely took the previous code literally and thought that print "Hello World!" meant
to literally print just "HeTTo World!" into the file, without the print. Your file has to be exactly
like mine in the previous code and all the screenshots; | have print "Hello World!" and print
before every line. Make sure your code is like mine and it should work.

This page intentionally left blank

18

EXERCISE 2

Comments and Pound Characters

Comments are very important in your programs. They are used to tell you what something does
in English, and they also are used to disable parts of your program if you need to remove them
temporarily. Here’s how you use comments in Python:

ex2.py

A comment, this is so you can read your program later.
Anything after the # 1is ignored by python.

print "I could have code Tike this." # and the comment after is ignored

You can also use a comment to "disable" or comment out a piece of code:
print "This won't run."

O OoONOOUVT A WN R

print "This will run."

From now on, I'm going to write code like this. It is important for you to understand that every-
thing does not have to be literal. Your screen and program may visually look different, but what's
important is the text you type into the file you're writing in your text editor. In fact, | could work
with any text editor and the results would be the same.

What You Should See

Exercise 2 Session

$ python ex2.py
I could have code like this.
This will run.

Again, I'm not going to show you screenshots of all the Terminals possible. You should understand
that the above is not a literal translation of what your output should look like visually, but the text
between the first § Python ... and last $ lines will be what you focus on.

Study Drrills

1. Find out if you were right about what the # character does and make sure you know
what it's called (octothorpe or pound character).

2. Take your ex2.py file and review each line going backward. Start at the last line, and
check each word in reverse against what you should have typed.

COMMENTS AND POUND CHARACTERS 19

3. Did you find more mistakes? Fix them.

4. Read what you typed previously out loud, including saying each character by its name.
Did you find more mistakes? Fix them.

Common Student Questions

Are you sure # is called the pound character?

I call it the octothorpe and that is the only name that no country uses and that works in every
country. Every country thinks its way to call this one character is both the most important way to
do it and also the only way it's done. To me this is simply arrogance and, really, y'all should just
chill out and focus on more important things like learning to code.

If # is for comments, then how come # -*- coding: utf-8 -*- works?

Python still ignores that as code, but it's used as a kind of “hack” or workaround for problems
with setting and detecting the format of a file. You also find a similar kind of comment for editor
settings.

Why does the # in print "Hi # there." not getignored?
The # in that code is inside a string, so it will be put into the string until the ending " character is
hit. These pound characters are just considered characters and aren’t considered comments.

How do | comment out multiple lines?
Put a # in front of each one.

I can‘t figure out how to type a # character on my country’s keyboard?
Some countries use the Alt key and combinations of those to print characters foreign to their
language. You'll have to look online in a search engine to see how to type it.

Why do | have to read code backward?
It's a trick to make your brain not attach meaning to each part of the code, and doing that makes
you process each piece exactly. This catches errors and is a handy error-checking technique.

This page intentionally left blank

279

Index

Symbols and Numbers
* (asterisk), 67
*args (asterisk args), 66-68
\ (backslash), 38-40
\\ (double backslash), 38, 252
[(left bracket), 106
] (right bracket), 106
A (caret), 15
: (colon), 67-68
code blocks and, 102, 110
as slice syntax, 148
, (comma), 32-33
in lists, 30, 68, 106
print function and, 42, 76, 195
. (dot or period), 55, 88, 128, 138-139
.DS_Store file, 261

.py files, 16
__init__.py file, 185-189, 193, 198, 221,
224, 236

passing variables to, 46-48
setup.py file, 82, 185-189
study drills for, 18, 21, 24
" (double-quote), 15, 38, 31, 33, 34-35,
38-40, 51
""" (triple-double-quote), 36-37
= (single-equal), 25-26, 78-79
== (double-equal), 25, 93-94, 96-100, 125
/ (forward slash), 40
file paths, 252
operator, 20-22, 125
// (double forward slash), 125-126
% (modulus/percent), 20, 22. See also formats
under strings
%d string format, 29, 31, 124, 127
%i string format, 22, 124, 127
%r string format, 29-31, 34-35, 37, 40, 44

%s string format, 26, 29, 31, 34-35, 40, 43
(octothorpe), 15-16, 18-19.
See also commenting
() (parentheses), 22, 67, 97
' (single-quote), 30-31, 33-35, 38-41, 43
""" (triple-single-quote), 40-41
_ (underscore), 24-25, 68, 181
__(double underscore), 56
__init__.py file, 185-189, 193, 198, 221,
224, 236
__template__(Q), 224

A
ActiveState Python, 7-8
addresses, web. See URL (uniform resource
locator)
Adventure, 50-51, 157
algorithms, 175, 232
Apache, 223
append() function, 107-108, 128
arguments, 46, 62, 70-72, 79, 181
*args (asterisk args), 66-68
argv (variables), 46-48, 50-51, 66-68
command line, 48, 51, 247-248
def command, 75
errors involving, 31, 224
lists and, 128-129
none, 224, 264
raw_input() vs., 48
arrays. See lists
ASCII characters, 15, 28, 35, 39
assert_equal () function, 191-192
assert_raises() function, 204
assert_response() function, 221-223
attributes, 143-144, 150, 154. See also classes

280 INDEX

B def and, 144

baseb64 library, 231-232 functions and, 138-146, 148, 156-158, 181
Bash (Linux), 6, 89, 246, 276 good style, 153, 181

bin folder, 189 inheritance and, 144, 148, 153-154,

in a game engine, 232-235 170-175. See also inheritance
in a “Hello World” project, 207-212

in a HTML form project, 216-224

in a skeleton project directory, 185-189
boolean logic, 31, 92-98

boolean algebra vs., 94

common questions about, 94, 98

elif (else-1if statements) and, 102-103

exit(0) and, 118

if-statements and, 106

nested decisions, 104-105

practice, 96-99

testing and, 120

Truth Tables, 93

while-Toops and, 110

instances and, 144

modules vs., 139-140

objects and, 144-145, 150-153, 178

parameters and, 144-145

parent/child, 154, 156, 170-173.

See also inheritance

self and, 144, 154

testing, 159-161
close() function, 56, 58, 62-64
coding

fixing. See debugging

good style, 181-182

“hard,” 54

reusable, 177
C command line interface (CLI)
arguments, 48, 51, 247-248
commands to learn on your own, 276
crash course (CLI-CC), 243-277
errors involving, 45, 48, 51, 56, 189
graphical user interfaces (GUIs) vs., 255
IDLE vs. 35
next steps, 276-277
passing arguments, 47-48
setup, 244-245

C (programming language), 237
“camel case,” 181
cascading style sheets (CSS), 211, 216, 223.
See also layout templates under HTML
(hypertext markup language)
cat command, 63, 247, 272-273
cd command, 246-247, 252-256
errors involving, 16, 208, 212
pwd command and, 250
character encodings. See ASCII; Unicode

(UTF-8)

class index, 207-209, 219
class Name(object) construct, 153, 182
classes, 123, 129-130, 138-148

attributes and, 144, 148. See also attributes

class hierarchy, 156-159, 175, 177

class index, 209-210, 219

coding, 159-161

composition and, 144, 176-177

commenting, 18-19, 24-25. See also #
(octothorpe)
documentation comments, 88
good practices in, 21, 25, 72, 118, 127,
182-183
composition, 144, 170, 176-177
config dictionary, 189
connection (web), 208, 215-216
Ccp command, 247, 266-269, 272

INDEX 281

CSS (cascading style sheets), 211, 216, 223.
See also layout templates under HTML
(hypertext markup language)

C3 algorithm, 175

D
data types, 123
debugging, 34, 120-122
"debuggers,” 121
log messages, 208
string formatting for, 31, 34-35, 37, 40, 45
def keyword, 66-68, 75, 123, 140, 224
Dexy, 237
dictionaries. See dicts (dictionaries)
dicts (dictionaries), 132-136
lists vs., 135
modules as, 138-140
Dijkstra, 115
directories, 246-247. See also bin folder
changing into (cd), 8, 250, 252-256
command line interface (CLI) commands,
246-265
errors involving, 16, 198, 208, 212, 224, 236
Linux, 9-10, 185
listing the contents of (1s), 256-260
Mac OSX, 7-8, 185
making (mkdir), 8, 250-252
moving around (pushd, popd), 262-265
print working (pwd), 248-230, 255-256
project skeleton, 184-189
removing (rmdir), 260-262
testing, 221
Windows, 8-9, 185-186
distribute package, 184, 193
Django, 211, 237

E

elif (else-1if statements), 102-105, 120
else statements, 102-103, 120

emacs text editor, 10

“end” statements, 33

errors. See also exception handling
arguments, 31, 224
A (caret), 15
cd command, 16, 208, 212
def keyword, 224
directories, 16, 198, 208, 212, 224, 236
if-statements, 120, 198
import command, 198, 234
ImportError, 89, 189, 198, 212, 224, 236
int(), 196
Tpthw.web, 16, 209, 212
modules, 89, 189, 198, 208, 212, 224
NameError, 25, 52
nosetests, 189, 193, 236
objects, 29
parameters, 47-48
PowerShell, 8, 16, 56, 264
PYTHONPATH, 193, 198, 224, 236
raising, 201
strings, 31, 64, 37, 40, 43
SyntaxError, 15-16, 45, 51, 89
Terminal program, 16, 56, 89
TypeError, 29, 31
ValueError, 47-48, 51, 196

escape sequences, 38-41, 124

except keyword, 196

exception handling, 196, 198, 203-204, 196.

See also errors

exists command, 62, 67

exit command, 275-276

exit() function, 118

F
features. See modules
files
common questions about, 56, 60, 63-64
copying (cp), 62-64, 266-269
file mode modifiers, 60
functions and, 74-76

282 INDEX

files (continued)

making empty (touch, new-1item), 265-266

moving (mv), 269-271
paths, 8, 252
reading, 54-56, 58-60. See also read ()
function; readTine() function
removing (rm), 273-275
running Python files, 13
streaming (cat), 63, 247, 272-273
study drills for, 55-56, 59-60, 63
viewing (1ess, MORE), 271-272
writing to, 58-60, 62
File Transport Protocol (FTP), 215
“finite state machine,” 168
“fixing stuff.” See refactoring
floating point numbers, 21, 25-26, 29, 80
float(raw_input()), 80
flow charts, 127
folders. See directories
for-Toops, 106-108, 110
rules for, 120
while-Toops vs., 112
freecode.com, 83
FTP (File Transport Protocol), 215
“functional programming,” 130
functions, 55-56, 66-68, 126-127
branches and, 116-118
calling, 71-72, 128
checklist for, 68
classes and, 138-146, 148, 156-158, 181

common questions about, 68, 71-72, 75-76,

80, 118
composition and, 176-177
creating, 66
files and, 74-76
good style, 68, 181
if-statements and, 102, 104, 106, 120
inheritance and, 171-173, 175
lists and, 128-130
loops and, 106, 110-112

match and peek, 200-201

modules and, 138-143

returning values from, 78-80

study drills for, 68, 71, 75, 80-81, 118
testing and, 196, 204, 221-223
variables and, 70-72, 85, 86-89

G
game design, 120-122, 180-183
common questions about, 168, 236
evaluating, 180-183
game engines, 157-161, 232-235
input. See user input
skeleton code for, 162-167
study drills for, 168, 235
web-based games, 226-230
gedit text editor, 9-11, 271
GET method, 207-211, 214, 219, 223
github.com, 83
gitorious.org, 83
global keyword, 122, 182
GNOME Terminal, 9
graphical user interface (GUI), 255-256, 269.
See also command line interface (CLI)

H
“hard coding,” 54
has-a relationships, 144-145, 150-154, 176
hashes (#). See # (octothorpe)
has-many relationships, 153
“Hello World,” 207-209
heTp () function, 88
HTML (hypertext markup language)
basic templates, 209-212
cascading style sheets (CSS) and, 216
forms, 214-219, 221-224
layout templates, 220-221
web-based game engines, 232-235
http (Hyper-Text Transport Protocol), 208, 215,
223, 231

INDEX 283

|
IDLE, 16
if-else statements, 198, 229
if-statements, 100-106, 120, 122
loops and, 106, 110
rules for, 120
import command
errors involving, 198, 234. See also
ImportError
files, 62-63, 86-90
modules, 138-141
packages, 46-47, 56
practice, 145-146, 180, 193, 198
ImportError, 89, 189, 198, 212, 224, 236
"increment by” operator, 101
infinite loops, 118
inheritance, 144-145, 170-178
altering before or after, 172-175
composition vs. 176-177
explicitly overriding, 172, 174-175
implicit, 171, 174-175
multiple, 154, 175. See also super ()
function
input(), 42-43. See also user input
instances, 144-146, 150-151
attributes and, 143-144, 150, 154
inheritance and, 170-172, 209
in practice, 209
self and, 143
int(), 43, 48, 72, 118, 196. See also
raw_input()
int(raw_input()), 43, 80
is-a relationships, 144-145, 150-154, 176

J
JavaScript, 178, 216, 238
join() function, 129-131

K
keywords, 122-123, 198

def keyword, 66-68, 75, 123, 140, 224
except, 196
global, 122, 182
raise, 123, 203
self, 140-146, 148, 154, 173
try, 196
Kivy, 237
KonsoTe, 9

L
launchpad.net, 83
learning
ignoring other programmers, 10, 115, 180,
182, 207, 243, 246
index cards for, 68, 92, 122, 244, 246-248,
252, 276
overthinking, 48, 269
practicing the hard way, 1-4, 11
reading code, 82-83, 126-127
reviewing, 81, 84-89, 122-127
self-learning, 122-127, 276
testing your knowledge, 90-91, 188
Ten() function, 62, 64
Tess command, 271-272
lexicons, 194-198, 200-204
Linux, 6
command line commands, 245-247, 271
installing packages on, 9-10, 184-185, 206
setting up Python on, 9-11
Terminal, 245-246
lists
accessing elements of, 114-116
arguments and, 128-129
arrays vs., 108
colons in, 148
commas in, 30, 68, 106
common questions about, 108, 130-131
dicts (dictionaries) vs., 135
functions and, 128-130
indexing into, 132

284 INDEX

lists (continued)
loops and, 106-109
manipulating, 128-131
ordering, 114
slice syntax, 148
study drills for, 108, 115, 130
tuples, 195-196, 200-202
2-dimensional (2D), 108
localhost, 208, 211, 215, 217, 219
logic. See boolean logic
look up tables. See dicts (dictionaries)
loops
for-Toops, 106-110, 112, 120
functions and 106, 110-112
if-statements and, 106, 110
infinite, 118
lists and, 106-109
rules for, 120
tuples and, 200
while-Toops, 110-112, 126, 128, 130, 161
Tpthw.web
dynamic web pages and, 207-211, 231
errors involving, 16, 209, 212
HTML forms and, 221-223
installing, 206-207
1s command, 187, 246-247, 256-260

M

Mac OSX
command line commands, 245-247
.DS_Store file, 261
installing packages on, 6-7, 184-185, 206
setting up Python on, 6-7, 10

match and peek, 200-201

match() function, 201

math, 20-22, 125-126. See also numbers;

operators

%d string format, 29, 31, 124, 127
%i string format, 22, 124, 127

meshes (#). See # (octothorpe)

method resolution order (MRO), 175
mkdir command, 185-186, 246-247,
250-252, 265
modules, 46-48, 138-143
classes and, 139-140
composition and, 176-177
dicts (dictionaries) and, 138-139
errors involving, 89, 189, 198, 208, 212, 224
functions and, 138-143
in practice, 87-89, 194-198, 202
installing new, 184-185, 188-189
variables from, 182
MORE command, 271-272
mv command, 247, 269-271

N
NAME module, 188-189
NameError, 25, 52
Natural Language Tool Kit, 237
“nested” decisions, 104-105
new-1item command, 265-266
new line character, 37, 38
Nginx, 223
nose package, 184, 204
nosetests, 187-189, 191-193, 222, 226, 236
Notepad++ text editor, 7-8, 10-11, 13
numbers, 20-22. See also math
as a data type, 123
dicts (dictionaries) and, 132-133
exceptions and, 196
floating point, 21, 25-26, 29, 80
indexing into a list with, 132
ordinal vs. cardinal, 114-115
ranges of, 105, 108
rounding down, 22, 29
user input of, 43

(0]
object-oriented programming (OOP), 130, 138,
142, 144-148

INDEX 285

analysis and design, 154-168
as “functional programming,” 130
inheritance in, 170, 177
top-down vs. bottom-up design processes,
161-162
objects, 138-143, 144-145
classes and, 144-145, 150-153, 178
creating, 140
errors involving, 29
as “mini-imports,” 140-141
object maps, 156, 158-159
rendering, 211
self and, 144
open() function, 54, 56, 60, 64
operators, 22, 98, 125-126
“increment by,” 101
order of operations, 22
space around, 26

P
packages
import command, 46-47, 56
installing, 9-10, 184-185, 206
Tpthw.web. See Tpthw.web
nose. See nose package
pip, 184, 188, 193, 206, 212
sys package, 56. See also argv
virtualenv, 184
Panda3D, 237
Pandas, 237
parameters, 46-48, 148, 211-212
argv, 67
classes and, 144-145
errors involving, 47-48
file handling and, 58-59
passing information as, 218-219, 222-223
raw_input(), 54-55, 118
syntax, 204
parent/child classes, 154, 156, 170-173. See
also inheritance

passing information
using parameters, 218-219, 222-223
variables, 46-48
peek () function, 200-202
pickle library, 231-232
pip package, 184, 188, 193, 206, 212
pop) function, 86, 89, 181
popd command, 246-247, 262-265
POST method, 218-223
pound sign (#). See # (octothorpe)
PowerShell
errors involving, 8, 16, 56, 264
references for, 277
setting up, 6, 7-9, 13, 245-246
print function, 24, 28-29, 32-37
commas in, 42, 76, 195
common questions about, 33-36
study drills for, 32-34, 36
programmers
%r string format, 29-31, 34-35, 37, 40-44
advice from a veteran, 241-242
ignoring other, 10, 115, 180, 182, 207, 243,
246
resources for, 237-238
specific use of numbers, 114-115
programming
“functional,” 130. See also object-oriented
(OOP) programming
other languages, 238-239. See also C
(programming language); Django;
JavaScript; Ruby
project design, 120-122. See also game design
common questions about, 189
creating a skeleton project directory,
185-188
installing packages, 184-185
object-oriented programming (OOP)
analysis and, 154-168
testing your setup, 187-188
top-down vs. bottom-up, 161-162

286 INDEX

pushd command, 246-247, 262-265
pwd command, 246-247, 248-256
pydoc command, 44-45, 54, 56, 74
PyGame, 237
Python
ActiveState, 7-8
first program in, 12-16
packages. See packages
setting up, 6-11. See also specific operating
systems
versions to use, 9, 35
PYTHONPATH, 193, 198, 224, 233-234, 236

Q
quit() command, 8-9, 56

R

raise keyword, 123, 203

raising exceptions, 196, 201-204

range () function, 105, 107-108, 112, 130

raw_input () function, 42-45, 48, 72, 80, 118,
195. See also int()

read () function, 54-56, 64

readline() function, 74-76, 89

refactoring, 226-230. See also debugging

relationships, 144-145, 150-154, 176. See also
composition; inheritance

Ren’Py, 237

render.index() function, 210-211, 217, 219

rm command, 246, 261, 273-275

rm -rf /, 246

rmdir command, 246-247, 260-262

round() function, 29

Ruby, 108, 238

S

SciKit-Learn, 237

SciPy, 237

ScraPy, 237

seek () function, 74-76

self keyword, 140-146, 148, 154, 173
sentences, 195, 200-204
servers, 208, 214-216, 219, 222-223
sessions (users), 231-232
setup.py file, 82, 185-189, 206
SimpleCV, 237
skip() function, 201-203
sourceforge.net, 83
strings, 30-31, 38-41
as arguments, 62
character encoding. See ASCII; Unicode
(UTF-8)
errors involving, 31, 64, 37, 40, 43
escape sequences, 38-41, 124
formats, 28-31, 34, 37, 40, 51, 124-125, 127
string literal, 15, 64
sudo command, 206, 247, 276
super () function, 154, 173-175
SyntaxError, 15-16, 45, 51, 64, 89
sys package, 56. See also argv
system PATH, 185, 189

T
temp directory, 250-260, 271-272, 275
Terminal program

errors involving, 16, 56, 89

exiting (exit), 275-277

IDLE vs., 16

input and, 43, 44-45

Linux, 9-10, 245

0OSX, 6-7, 14, 245

Windows. See PowerShell
testing

automated, 190-193

guidelines for, 192

HTML forms, 221-224

test_ functions, 192

writing test cases, 190-192
text editors, 6-7, 9-12, 18, 271-272
TextWrangTer text editor, 6-7, 10-12

INDEX 287

thttpd, 223

touch command, 265-266
truncate() function, 58, 60
Truth Tables, The, 93
try-expect construct, 198
try keyword, 196

tuples, 195-196, 200-202
TypeError, 29, 31

V)
“underscore format,” 181
Unicode (UTF-8), 15-16, 19, 28, 39, 43
Unix, 248-249, 252, 260. See also Linux
Bash references, 276
cat command, 273
pushd command, 264
rmdir command, 266
skeleton project directory for, 187
touch command, 266
URL (uniform resource locator), 208-209, 215,
217-219, 222-223
urll1ib library, 145-146
user input, 42-43
advanced, 194-198
browser, 214-219
common questions, 43, 45, 51-52, 198, 204
exceptions, 196, 203
input() function, 42-43
numbers, 196
prompting for, 44, 50-52
scanner, 195-198
study drills for, 43, 45-46, 51, 198, 204
tracking sessions, 231-232
UserWarning, 193

\)
ValueError, 47-48, 51, 196
variables, 24-26, 28-29

arguments and, 46-48, 50-51, 66-68
common questions about, 25-26, 29, 71-72
declarations, 224
functions and, 70-72, 85, 86-89
global, 72
modules and, 182
naming, 29, 30
passing to Python files, 46-48
representation of, 34. See also %r string
format
study drills for, 25, 29, 71
vim text editor, 10
virtualenv package, 184

w
web . py files, 207, 212, 277
websites, 206-224
HTML forms, 214-224
HTML templates, 209-211, 220-221
web requests, 214-216
while-Toops, 110-112, 120, 126, 128, 130, 161
Windows
command line interface (CLI), 245-248
directories in, 8-9, 185-186
installing packages on, 7-9, 184-185, 206
PowerShell. See PowerShell
setting up Python on, 7-9
write() function, 58-59

X
xterm, 9

Y
“yak shaving,” 184

z
Zork, 50-51, 157
zsh (Z shell), 246

This page intentionally left blank

A
\A 4
Addison
\WEHEY

REGISTER

THIS PRODUCT

Register the Addison-Wesley, Exam Registering your products can unlock
Cram, Prentice Hall, Que, and the following benefits:

Sams products you own to unlock e Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
e A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter Registration benefits vary by product.
the 10- or 13-digit ISBN that appears Benefits will be listed on your Account
on the back cover of your product. page under Registered Products.

/ N\

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

\\7)

informiT.com

THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

In'nrm -com THE TRUSTED TECHNOLOGY LEARNING SOURCE

PEARSON InformIT is a brand of Pearson and the online presence
R — for the world’s leading technology publishers. It's your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

vwAddison-Wesley Cisco Press ExAMycRAM IBM gue $§ PRENTICE g4AMS | Safari’

Press. * e¢e HALL &S T S aonine

LearniT at InformIiT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

e [earn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

e Access FREE podcasts from experts at informit.com/podcasts.

e Read the latest author articles and sample chapters at
informit.com/articles.

e Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

e Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

=~ You
I Tube)

In'nrmIT-com THE TRUSTED TECHNOLOGY LEARNING SOURCE

#Addison-Wesley Cisco Press ExaMicrAM IBM gue 33 °revTice sAMs | Safari”

Press.

Try Safari Books Online FREE for 15 days

Get online access to Thousands of Books and Videos

livelessons®

C# 2010

Fundamentals
I, 1l,and Ill
Paul J. Deitel

\Vile[=Ye}

0e) _ oo .
Safarl FREE 15-DAY TRIAL + 15% OFF

sosonine._INfOrmit.com/safaritrial

Feed your brain

Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE'S MORE!

Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project

Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for first
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

	Contents
	Preface
	Acknowledgments
	The Hard Way Is Easier
	Reading and Writing
	Attention to Detail
	Spotting Differences

	Do Not Copy-Paste
	Using the Included Videos
	A Word of Advice for ”Visual Learners”

	A Note on Practice and Persistence
	A Warning for the Smarties

	Exercise 1 A Good First Program
	What You Should See
	Study Drills
	Common Student Questions

	Exercise 2 Comments and Pound Characters
	What You Should See
	Study Drills
	Common Student Questions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

