

SY0-401

Fourth Edition

PEARSON IT

CERTIFICATION

DIANE BARRETT MARTIN WEISS KIRK HAUSMAN

EXAM/CRAM

CompTIA® Security+™ SY0-401 Fourth Edition

Diane Barrett, Kalani K. Hausman, Martin Weiss

800 East 96th Street, Indianapolis, Indiana 46240 USA

CompTIA® Security+™ SY0-401 Exam Cram, Fourth Edition

Copyright © 2015 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-7897-5334-2 ISBN-10: 0-7897-5334-0

Library of Congress Control Number: 2015930248

Printed in the United States of America

First Printing: February 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Que Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The authors and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the CD or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief

Acquisitions Editor Betsv Brown

Development Editor Ellie Bru

Managing Editor Sandra Schroeder

Senior Project Editor Tonya Simpson

Copy Editor Keith Cline

Indexer Erika Millen

Proofreader Megan Wade-Taxter

Technical Editor Chris Crayton

Publishing Coordinator Vanessa Evans

Media Producer Lisa Matthews

Cover Designer Alan Clements

Compositor Studio Galou

Contents at a Glance

Introduction		xxii
Part I: Netwo	rk Security	
CHAPTER 1	Secure Network Design	1
CHAPTER 2	Network Implementation	49
Part II: Comp	liance and Operational Security	
CHAPTER 3	Risk Management	83
CHAPTER 4	Response and Recovery	143
Part III: Threa	ts and Vulnerabilities	
CHAPTER 5	Attacks	203
CHAPTER 6	Deterrents	261
Part IV: Applie	cation, Data, and Host Security	
CHAPTER 7	Application Security	291
CHAPTER 8	Host Security	311
CHAPTER 9	Data Security	
Part V: Acces	s Control and Identity Management	
CHAPTER 10	Authentication, Authorization, and Access Control	391
CHAPTER 11	Account Management	421
Part VI: Crypt	ography	
CHAPTER 12	Cryptography Tools and Techniques	439
CHAPTER 13	Public Key Infrastructure	473
Practice Exar	m 1	491
Index		533

On the CD:

Practice Exam 2 Glossary

Contents

Introduction	
Part I: Net	work Security
CHAPTER 1	Secure Network Design 1
	ent Security Configuration Parameters on Network Devices
and C	ther Technologies
F	irewalls
R	outers
S	witches
L	oad Balancers
Р	roxies
V	Veb Security Gateways 7
V	PN Concentrators
Ν	NDS and NIPS
Р	rotocol Analyzers
S	pam Filter
U	TM Security Appliances
V	Veb Application Firewall Versus Network Firewall 14
А	pplication-Aware Devices
	Gram Quiz
C	Tram Quiz Answers
Given a	Scenario, Use Secure Network Administration Principles 19
	ule-Based Management. 20
	irewall Rules
V	LAN Management
	ecure Router Configuration
	ccess Control Lists
	ort Security
	02.1X
F	lood Guards
	oop Protection
	nplicit Deny
	Jetwork Separation
	og Analysis
	Jnified Threat Management
C	

Cram Quiz	28
Cram Quiz Answers	28
Explain Network Design Elements and Components	30
DMZ	31
Subnetting	32
VLAN	34
NAT	36
Remote Access.	37
Telephony	37
NAC	39
Virtualization.	40
Cloud Computing	41
Layered Security/Defense in Depth	44
Cram Quiz	45
Cram Quiz Answers	46
What Next?	47
CHAPTER 2 Network Implementation	49
Given a Scenario, Implement Common Protocols and Services	50
Protocols	51
Ports	65
OSI Relevance	67
Cram Quiz	68
Cram Quiz Answers	69
Given a Scenario, Troubleshoot Security Issues Related to	
Wireless Networking	70
WPA	71
WPA2	71
WEP	72
EAP	73
PEAP	73
LEAP	74
MAC Filter	74
Disable SSID Broadcast	75
ТКІР	75
ССМР	76
Antenna Placement.	76

Power-Level Controls.	77
Captive Portals	78
Antenna Types.	78
Site Surveys	79
VPN (Over Open Wireless).	80
Cram Quiz	81
Cram Quiz Answers	81
What Next?	82
Part II: Compliance and Operational Security	
CHAPTER 3 Risk Management	83
Explain the Importance of Risk-Related Concepts	84
Control Types	85
False Positives	85
False Negatives	86
Importance of Policies in Reducing Risk	86
Risk Calculation.	90
Qualitative Versus Quantitative Measures	94
Vulnerabilities	94
Threat Vectors	95
Probability/Threat Likelihood	95
Risk-Avoidance, Transference, Acceptance, Mitigation,	
Deterrence	96
Risks Associated with Cloud Computing and Virtualization	96
Recovery Time Objective and Recovery Point Objective	97
Cram Quiz	99
Cram Quiz Answers 1	100
Summarize the Security Implications of Integrating Systems and Data with Third Parties	101
On-Boarding/Off-Boarding Business Partners	102
Social Media Networks and/or Applications 1	103
Interoperability Agreements	104
Privacy Considerations 1	105
Risk Awareness 1	106
Unauthorized Data Sharing 1	107
Data Ownership	108
Data Backups 1	108

Follow Security Policy and Procedures
Review Agreement Requirements to Verify Compliance and
Performance Standards 110
Cram Quiz
Cram Quiz Answers
Given a Scenario, Implement Appropriate Risk Mitigation Strategies 113
Change Management
Incident Management
User Rights and Permissions Reviews
Perform Routine Audits
Enforce Policies and Procedures to Prevent Data Loss or Theft 117
Enforce Technology Controls
Cram Quiz
Cram Quiz Answers
Given a Scenario, Implement Basic Forensic Procedures
Order of Volatility
Capture System Image 124
Network Traffic and Logs
Capture Video
Record Time Offset
Take Hashes
Screenshots
Witnesses
Track Man-Hours and Expense
Chain of Custody
Big Data Analysis
Cram Quiz
Cram Quiz Answers
Summarize Common Incident Response Procedures
Preparation
Incident Identification
Escalation and Notification
Mitigation Steps
Lessons Learned
Reporting
Recovery/Reconstitution Procedures
First Responder

viii

CompTIA Security+ SY0-401 Exam Cram

Incident Isolation
Data Breach
Damage and Loss Control
Cram Quiz
Cram Quiz Answers
What Next?
CHAPTER 4 Response and Recovery
Explain the Importance of Security-Related Awareness and Training 144
Security Policy Training and Procedures
Role-Based Training
Personally Identifiable Information
Information Classification
Public
Data Labeling, Handling, and Disposal
Compliance with Laws, Best Practices, and Standards 150
User Habits
New Threats and New Security Trends/Alerts
Use of Social Networking and Peer-to-Peer Services
Follow Up and Gather Training Metrics to Validate Compliance and Security Posture
Cram Quiz
Cram Quiz Answers
Compare and Contrast Physical and Environmental Controls 157
Environmental Controls
Physical Security
Control Types
Cram Quiz
Cram Quiz Answers
Summarize Risk Management Best Practices
Business Continuity Concepts
Fault Tolerance
Disaster Recovery Concepts
Cram Quiz
Cram Quiz Answers
Given a Scenario, Select the Appropriate Control to Meet the Goals
of Security
Confidentiality

Integrity
Availability
Safety
Cram Quiz
Cram Quiz Answers
What Next?
Part III: Threats and Vulnerabilities
CHAPTER 5 Attacks
Explain Types of Malware
Adware
Viruses
Worms
Spyware
Trojan Horses
Rootkits
Backdoors
Logic Bombs 210
Botnets
Ransomware
Polymorphic Malware
Armored Virus
Cram Quiz
Cram Quiz Answers
Summarize Various Types of Attacks
Man-in-the-Middle 216
Denial of Service
Distributed DoS. 218
Replay
DNS Poisoning
ARP Poisoning
Spoofing
Spam
Phishing and Related Attacks
Privilege Escalation
Malicious Insider Threat
Transitive Access and Client-Side Attacks

Password Attacks
Typo Squatting/URL Hijacking
Watering Hole Attack
Cram Quiz
Cram Quiz Answers
Summarize Social Engineering Attacks and the Associated
Effectiveness with Each Attack
Social Engineering
Shoulder Surfing
Dumpster Diving 237
Tailgating 238
Impersonation
Hoaxes
Principles (Reasons for Effectiveness)
Cram Quiz
Cram Quiz Answers
Explain Types of Wireless Attacks
Jamming/Interference
Rogue Access Points
War Driving
Bluejacking/Bluesnarfing
Packet Sniffing
WEP/WPA Attacks
WPS Attacks
Near-Field Communication
Cram Quiz
Cram Quiz Answers
Explain Types of Application Attacks
Browser Threats
Code Injections
Directory Traversal
Header Manipulation
Zero-Day
Buffer Overflows
Integer Overflows
Cookies
Arbitrary/Remote Code Execution

Cram Quiz	258
Cram Quiz Answers	258
What Next?	259
CHAPTER 6 Deterrents	261
Analyze a Scenario and Select the Appropriate Type of Mitigation and Deterrent Techniques	067
Monitoring System Logs	
Hardening	
Security Posture	
Detection Controls Versus Prevention Controls	
Cram Quiz	
Cram Quiz Answers	
Given a Scenario, Use Appropriate Tools and Techniques to Discover Security Threats and Vulnerabilities	
Interpret Results of Security Assessment Tools	275
Tools	275
Risk Calculation	279
Assessment Technique 2	280
Cram Quiz 2	282
Cram Quiz Answers 2	282
Explain the Proper Use of Penetration Testing Versus Vulnerability	
Scanning	
Penetration Testing	284
Vulnerability Scanning	285
Testing	287
Cram Quiz	288
Cram Quiz Answers	288
What Next?	289
Part IV: Application, Data, and Host Security	
CHAPTER 7 Application Security	291

Explain the Importance of Application Security Controls and	
Techniques	292
Fuzzing	
Secure Coding Concepts	

Cross-Site Scripting Prevention
Cross-Site Request Forgery Prevention
Application Configuration Baseline (Proper Settings) 301
Application Hardening
Application Patch Management
NoSQL Databases Versus SQL Databases
Server-Side Versus Client-Side Validation
Cram Quiz
Cram Quiz Answers
What Next?
CHAPTER 8 Host Security
Summarize Mobile Security Concepts and Technologies
Device Security
Application Security
BYOD Concerns
Cram Quiz
Cram Quiz Answers
Given a Scenario, Select the Appropriate Solution to Establish
Host Security
Operating System Security and Settings
OS Hardening
Anti-malware
Patch Management
White Listing Versus Black Listing Applications
Trusted OS
Host-Based Firewalls
Host-Based Intrusion Detection
Hardware Security
Host Software Baselining
Virtualization
Cram Quiz
Cram Quiz Answers
What Next?
CHAPTER 9 Data Security
Implement the Appropriate Controls to Ensure Data Security
Cloud Storage

SAN
Handling Big Data
Data Encryption
Hardware-Based Encryption Devices
Data In-Transit, Data At-Rest, Data In-Use
Permissions/ACL
Data Policies
Cram Quiz
Cram Quiz Answers
Compare and Contrast Alternative Methods to Mitigate Security Risks in Static Environments
Environments
Methods
Cram Quiz
Cram Quiz Answers
What Next?
Part V: Access Control and Identity Management
CHAPTER 10 Authentication, Authorization, and Access Control 391
Chapter to Authentication, Authorization, and Access Control
Compare and Contrast the Function and Purpose of Authentication
Compare and Contrast the Function and Purpose of Authentication Services
Compare and Contrast the Function and Purpose of Authentication Services
Compare and Contrast the Function and Purpose of AuthenticationServices.393RADIUS.TACACS+Kerberos.395
Compare and Contrast the Function and Purpose of Authentication Services
Compare and Contrast the Function and Purpose of Authentication Services.393RADIUS.394TACACS+394Kerberos.395LDAP.397XTACACS398
Compare and Contrast the Function and Purpose of AuthenticationServices393RADIUS394TACACS+394Kerberos395LDAP397XTACACS398SAML398
Compare and Contrast the Function and Purpose of Authentication Services.393RADIUS.394TACACS+394Kerberos.395LDAP.397XTACACS398
Compare and Contrast the Function and Purpose of AuthenticationServices393RADIUS394TACACS+394Kerberos395LDAP397XTACACS398SAML398
Compare and Contrast the Function and Purpose of Authentication Services.393RADIUS.394TACACS+394Kerberos.395LDAP.397XTACACS398SAML398Secure LDAP399Cram Quiz399Cram Quiz Answers399
Compare and Contrast the Function and Purpose of Authentication Services.393RADIUS.394TACACS+394Kerberos.395LDAP.397XTACACS398SAML398Secure LDAP398Cram Quiz399Cram Quiz Answers399Given a Scenario, Select the Appropriate Authentication,
Compare and Contrast the Function and Purpose of Authentication Services.393RADIUS.394TACACS+394Kerberos.395LDAP.397XTACACS398SAML398Secure LDAP399Cram Quiz399Cram Quiz Answers399
Compare and Contrast the Function and Purpose of Authentication Services
Compare and Contrast the Function and Purpose of Authentication Services.393RADIUS.394TACACS+394Kerberos395LDAP.397XTACACS398SAML398Secure LDAP399Cram Quiz399Cram Quiz Answers399Given a Scenario, Select the Appropriate Authentication, Authorization, or Access Control401Identification Versus Authentication Versus Authorization402
Compare and Contrast the Function and Purpose of Authentication Services

CompTIA Security+ SY0-401 Exam Cram

100	leration
Tr	ansitive Trust/Authentication
Cr	am Quiz
Cr	am Quiz Answers
What No	ext?
CHAPTER 11	Account Management
Manage Mi R Ace Gr Us Co Cr Cr	d Configure Security Controls When Performing Accountement, Based on Best Practicestigate Issues Associated with Users with Multiple Account/oles and/or Shared Accountscount Policy Enforcement424oup-Based Privileges431er-Assigned Privileges433ntinuous Monitoring435am Quiz436ext?437
Part VI: Cry	otography
Part VI: Cry	otography Cryptography Tools and Techniques
CHAPTER 12	
CHAPTER 12 Given a	Cryptography Tools and Techniques
CHAPTER 12 Given a Syr	Cryptography Tools and Techniques
CHAPTER 12 Given a Syn Ell	Cryptography Tools and Techniques 439 Scenario, Utilize General Cryptography Concepts 441 nmetric Versus Asymmetric. 442
CHAPTER 12 Given a Syn Ell In-	Cryptography Tools and Techniques 439 Scenario, Utilize General Cryptography Concepts 441 nmetric Versus Asymmetric. 442 iptic Curve and Quantum Cryptography 444
CHAPTER 12 Given a Syr Ell In- Ses	Cryptography Tools and Techniques 439 Scenario, Utilize General Cryptography Concepts 441 nmetric Versus Asymmetric. 442 iptic Curve and Quantum Cryptography 444 Band Versus Out-of-Band Key Exchange 445
CHAPTER 12 Given a Syn Ell In- Ses Tr	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445sion Keys445
CHAPTER 12 Given a Syr Ell In- See Tr No	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445sion Keys445ansport Encryption447
CHAPTER 12 Given a Syn Ell In- Ses Tr No Ha	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445sion Keys445ansport Encryption447onrepudiation and Digital Signatures447
CHAPTER 12 Given a Syn Ell In- Ses Tr No Ha Ke	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445sion Keys445ansport Encryption447onrepudiation and Digital Signatures447shing449
CHAPTER 12 Given a Syn Ell In- Ses Tr No Ha Ke Ste	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445ansport Encryption447onrepudiation and Digital Signatures447shing449y Escrow450
CHAPTER 12 Given a Syn Ell In- Ses Tr No Ha Ke Ste Us	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445sion Keys445ansport Encryption447onrepudiation and Digital Signatures447shing449y Escrow450ganography450
CHAPTER 12 Given a Syr Ell In- Ses Tr No Ha Ke Ste Us Cr	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445sion Keys445ansport Encryption447onrepudiation and Digital Signatures447shing449y Escrow450ganography451
CHAPTER 12 Given a Syn Ell In- Ses Tr No Ha Ke Stee Us Cr Cr	Cryptography Tools and Techniques439Scenario, Utilize General Cryptography Concepts441nmetric Versus Asymmetric.442iptic Curve and Quantum Cryptography444Band Versus Out-of-Band Key Exchange445sion Keys445ansport Encryption447onrepudiation and Digital Signatures447shing449y Escrow450ganography451am Quiz452

Cryptographic Hash Functions
HMAC
Symmetric Encryption Algorithms
Asymmetric Encryption Algorithms
One-Time Pads
PGP
Use of Algorithms with Transport Encryption
Cipher Suites
Key Stretching
Cram Quiz
Cram Quiz Answers
What Next?
CHAPTER 13 Public Key Infrastructure
-
Given a Scenario, Use Appropriate PKI, Certificate Management, and Associated Components
Public Key Infrastructure Standards
РКІ
Certificate Policies
Public and Private Key Usage
Revocation
Trust Models
Cram Quiz
Cram Quiz Answers
What Next?
PRACTICE EXAM 1
Exam Questions
Answers at a Glance
Answers with Explanations
INDEX

On the CD:

Practice Exam 2

Glossary

About the Authors

Diane Barrett is the president of NextGard Technology and a professor for Bloomsburg University. She has done contract forensic and security assessment work for several years and has authored several other security and forensic books. She is a program director for ADFSL's Conference on Digital Forensics, Security, and Law; the DFCP certification chair for the Digital Forensic Certification Board; and a volunteer for the NIST Cloud Computing Forensic Science Challenges working group. She holds many industry certifications, including CISSP, ISSMP, DFCP, and PCME, along with several from CompTIA, including Security+. Diane's education includes a Ph.D. in business administration with a specialization in information security and a master of science degree in information technology with a specialization in information security.

Kalani Kirk Hausman is an author, GRC professional, enterprise and security architect, ISO, and consultant with experience that includes mediumto large-scale globally deployed networks in governmental, higher education, healthcare, and corporate settings. Kalani's professional certifications include the CISSP, CGEIT, CRISC, CISA, CISM, GIAC-GHSC, PMP, ITIL, and CCP. He is active within the InfraGard; Information Systems Audit and Control Association (ISACA); ISSA; and High Technology Crime Investigation Association (HTCIA). Kalani is currently employed at Texas A&M University and as an adjunct professor of InfoSec at UMUC and APU/AMU. Kalani can be reached at kkhausman@hotmail.com or followed on Twitter at @kkhausman.

Martin M. Weiss has years of experience in information security, risk management, and compliance. Marty holds a bachelor of science degree in computer studies from the University of Maryland University College and an MBA from the Isenberg School of Management at the University of Massachusetts Amherst. He holds several certifications, including CISSP, CISA, and Security+. Marty has authored and co-authored more than a half dozen books on information technology. Occasionally, he molds minds as an adjunct professor with the University of Maryland University College. A Florida native, he now lives in New England somewhere between Boston and New York City.

Dedication

To my husband, Bill, for his patience and understanding.

—Diane Barrett

To Susan and our wonderful children, Jonathan and Cassandra, who remind me of the joy present in the world.

—Kalani K. Hausman

This is for you Annie! Welcome!

From the 3rd edition: Vp,lyos drvitoyu l;id rcs, vts, drvpmf rfoyopm eo;; ntsrl yir vpfr 2521202 0861704 3330307 3251403

Solution: CompTIA Security+ Exam Cram second edition will break the code (keyboard shift cipher) To my future daughter (page;line;word).

-Martin Weiss

Acknowledgments

Publishing a book takes the collaboration and teamwork of many individuals. Thanks to everyone involved in this process from Waterside Productions and Pearson Education (and thanks to those who purchase this book in their quest for certification). Betsy, thanks for keeping us all on track. To our editorial and technical reviewers, especially Chris, thank you for making sure that our work was sound and on target. Special thanks to my coauthors, Marty and Kirk.

—Diane Barrett

Thanks to my agent Carole McClendon, to Betsy Brown, Ellie Bru, and the excellent editorial staff at Pearson. Special thanks go to my coauthors Martin Weiss and Diane Barrett, whose knowledge and dedication produced this remarkable text.

—Kalani K. Hausman

Once again, thank you to the entire team that worked together to get this book updated and published. Special thanks to the work and for the support from Ellie, Betsy, Chris, Tonya, and of course Kirk and Diane. Thank you to you, the reader, for your trust and for looking to us to help you pursue your security knowledge and quest for certification. Finally, I'd like to acknowledge my incredible friends and family.

-Martin Weiss

We Want to Hear from You!

As the reader of this book, *you* are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book's title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: feedback@pearsonitcertification.com

Mail: ATTN: Reader Feedback 800 East 96th Street Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at pearsonitcertification.com/register for convenient access to any updates, downloads, or errata that might be available for this book.

CompTIA.

It Pays to Get Certified

In a digital world, digital literacy is an essential survival skill.

Certification demonstrates that you have the knowledge and skill to solve technical or business problems in virtually any business environment. CompTIA certifications are highlyvalued credentials that qualify you for jobs, increased compensation, and promotion.

Security +

CERTIFIED Certification Helps Your Career

IT is Everywhere	IT Knowledge and Skills Get Jobs	Job Retention	New Opportunities	High Pay-High Growth Jobs
IT is mission critical to almost all organizations and its importance is increasing.	Certifications verify your knowledge and skills that qualifies you for:	Competence is noticed and valued in organizations.	Certifications qualify you for new opportunities in your current job or when you want to change careers.	Hiring managers demand the strongest skill set.
 79% of U.S. businesses report IT is either important or very important to the success of their company 	Jobs in the high growth IT career field Increased compensation Challenging assignments and promotions 60% report that being certified is an employer or job requirement	Increased knowledge of new or complex technologies Thanced productivity More insightful problem solving Better project management and communication skills 47% report being certified helped improve their problem solving	31% report certification improved their career advancement opportunities	There is a widening IT skills gap with over 300,000 jobs open e88% report being certified enhanced their resume

- Security is one of the highest demand job categories—growing in importance as the frequency and severity of security threats continues to be a major concern for organizations around the world.
- Jobs for security administrators are expected to increase by 18% the skill set required for these types of jobs maps to the CompTIA Security+ certification.
- Network Security Administrators—can earn as much as \$106,000 per year.
- CompTIA Security+ is the first step—in starting your career as a Network Security Administrator or Systems Security Administrator.
- More than ¼ million—individuals worldwide are CompTIA Security+ certified.
- CompTIA Security+ is regularly used in organizations—such as Hitachi Systems, Fuji Xerox, HP, Dell, and a variety of major U.S. government contractors.
- Approved by the U.S. Department of Defense (DoD)—as one of the required certification options in the DoD 8570.01-M directive, for Information Assurance Technical Level II and Management Level I job roles.

Steps to Getting Certified and Staying Certified

Review Exam Objectives	Review the Certification objectives to make sure you know what is covered in the exam.http://certification.comptia.org/examobjectives.aspx
Practice for the Exam	After you have studied for the certification, review and answer the sample questions to get an idea what type of questions might be on the exam. http://certification.comptia.org/samplequestions.aspx
Purchase an Exam Voucher	Purchase exam vouchers on the CompTIA Marketplace. www.comptiastore.com
Take the Test!	Go to the Pearson VUE website and schedule a time to take your exam. http://www.pearsonvue.com/comptia/
Stay Certified! Continuing Education	Effective January 1, 2011, new CompTIA Security+ certifications are valid for three years from the date of certification. There are a number of ways the certification can be renewed. For more information go to: http://certification.comptia.org/ce

How to obtain more information

- Visit CompTIA online http://certification.comptia.org/home.aspx to learn more about getting CompTIA certified.
- Contact CompTIA—call 866-835-8020 and choose Option 2 or email questions@comptia.org.

f 🐽 in 🕑 You Tube

Connect with us-

To receive your 10% off Exam Voucher, register your product at:

www.pearsonitcertification.com/register

and follow the instructions.

Introduction

Welcome to *CompTIA Security+ SY0-401 Exam Cram*, Fourth Edition. This book aims to help you get ready to take and pass the CompTIA Security+ exam, number SY0-401.

Chapters 1–13 are designed to remind you of everything you need to know to pass the SY0-401 certification exam. The two practice exams at the end of this book should give you a reasonably accurate assessment of your knowledge, and, yes, we've provided the answers and their explanations for these practice exams. Read this book, understand the material, and you'll stand a very good chance of passing the real test.

Exam Cram books help you understand and appreciate the subjects and materials you need to know to pass CompTIA certification exams. Exam Cram books are aimed strictly at test preparation and review. They do not teach you everything you need to know about a subject. Instead, the authors streamline and highlight the pertinent information by presenting and dissecting the questions and problems they've discovered that you're likely to encounter on a CompTIA test.

We strongly recommend that you spend some time installing, configuring, and working with the latest operating systems to patch and maintain them for the best and most current security possible because the Security+ exam focuses on such activities and the knowledge and skills they can provide for you. Nothing beats hands-on experience and familiarity when it comes to understanding the questions you're likely to encounter on a certification test. Book learning is essential, but, without doubt, hands-on experience is the best teacher of all!

Taking a Certification Exam

After you prepare for your exam, you need to register with a testing center. At the time of this writing, the cost to take the Security+ exam is \$293 USD for individuals (\$226 for CompTIA members). CompTIA corporate members receive discounts on nonmember pricing. For more information about these discounts, a local CompTIA sales representative can provide answers to any questions you might have. If you don't pass, you can take the exam again for the same cost as the first attempt, for each attempt until you pass. In the United States and Canada, tests are administered by Prometric or VUE.

After you sign up for a test, you are told when and where the test is scheduled. You should arrive at least 15 minutes early. To be admitted into the testing room, you must supply two forms of identification, one of which must be a photo ID.

About This Book

We've structured the topics in this book to build on one another. Therefore, some topics in later chapters make the most sense after you've read earlier chapters. That's why we suggest that you read this book from front to back for your initial test preparation. If you need to brush up on a topic or if you have to bone up for a second try, you can use the index, table of contents, or Table I-1 to go straight to the topics and questions that you need to study. Beyond helping you prepare for the test, we think you'll find this book useful as a tightly focused reference to some of the most important aspects of the Security+ certification.

Chapter Format and Conventions

Every Exam Cram chapter follows a standard structure and contains graphical clues about important information. The structure of each chapter includes the following:

- **Opening objectives list:** This defines the official CompTIA Security+ exam objectives covered in the chapter.
- **Cram Saver questions:** Each major section begins with a Cram Saver to help you determine your current level of knowledge of the topics in that section.
- ▶ **Topical coverage:** The heart of the chapter. Explains the topics from a hands-on and a theory-based standpoint. This includes in-depth descriptions geared to build your knowledge so that you can pass the exam.
- **Exam Alerts:** These are interspersed throughout the book. They include important information on test topics. Watch out for them!

ExamAlert

This is what an Exam Alert looks like. Normally, an alert stresses concepts, terms, hardware, software, or activities that are likely to relate to one or more certification test questions.

► **Cram Quiz questions:** At the end of each topic is a quiz. The quizzes, and their explanations, are meant to gauge your knowledge of the subjects. If the answers to the questions don't come readily to you, consider reviewing the section.

Additional Elements

Beyond the chapters there are a few more elements:

- ▶ **Practice exams:** There are two practice exams. They are printed in the book and included with the Pearson IT Certification Practice Test Engine on the CD.
- ▶ **Cram Sheet:** The tear-out Cram Sheet is located right in the beginning of the book. This is designed to jam some of the most important facts you need to know for the exam into one small sheet, allowing for easy memorization.
- ▶ Glossary: Definitions of key CompTIA Security+ exam terms.

Exam Objectives

Table I-1 lists the skills measured by the SY0-401 exam and the chapter in which the objective is discussed. Some objectives are covered in other chapters, too.

TABLE I.1 CompTIA SY0-401 Exam Objectives

Exam Objective	Chapter
Domain 1: Network Security	
Implement security configuration parameters on network devices and other technologies	1
Given a scenario, use secure network administration principles	1
Explain network design elements and components	1

Exam Objective	Chapter
Given a scenario, implement common protocols and services	2
Given a scenario, troubleshoot security issues related to wireless networking	2
Domain 2: Compliance and Operational Security	
Explain the importance of risk related concepts	3
Summarize the security implications of integrating systems and data with third parties	3
Given a scenario, implement appropriate risk mitigation strategies	3
Given a scenario, implement basic forensic procedures	3
Summarize common incident response procedures	3
Explain the importance of security related awareness and training	4
Compare and contrast physical security and environmental controls	4
Summarize risk management best practices	4
Given a scenario, select the appropriate control to meet the goals of security	4
Domain 3: Threats and Vulnerabilities	
Explain types of malware	5
Summarize various types of attacks	5
Summarize social engineering attacks and the associated effectiveness with each attack	5
Explain types of wireless attacks	5
Explain types of application attacks	5
Analyze a scenario and select the appropriate type of mitigation and deterrent techniques	6
Given a scenario, use appropriate tools and techniques to discover security threats and vulnerabilities	6
Explain the proper use of penetration testing versus vulnerability scanning	6
Domain 4: Application, Data, and Host Security	
Explain the importance of application security controls and techniques	7
Summarize mobile security concepts and technologies	8
Given a scenario, select the appropriate solution to establish host security	8
Implement the appropriate controls to ensure data security	9
Compare and contrast alternative methods to mitigate security risks in static environments	9
Domain 5: Access Control and Identity Management	
Compare and contrast the function and purpose of authentication services	10
Given a scenario, select the appropriate authentication, authorization or access control	10
Install and configure security controls when performing account management, based on best practices	11

Exam Objective	Chapter
Domain 6: Cryptography	
Given a scenario, utilize general cryptography concepts	12
Given a scenario, use appropriate cryptographic methods	12
Given a scenario, use appropriate PKI, certificate management and associated components	13

Pearson IT Certification Practice Test Engine and Questions on the CD

The CD in the back of the book includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode or take a simulated exam that mimics real exam conditions.

The installation process requires two major steps: installing the software and then activating the exam. The CD in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of exam questions—is not on the CD.

Note

The cardboard CD case in the back of this book includes the CD and a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time-use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Install the Software from the CD

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows Virtual Machine, but it was built specifically for the PC platform. The minimum system requirements are the following:

- ▶ Windows XP (SP3), Windows Vista (SP2), or Windows 7
- ▶ Microsoft .NET Framework 4.0 Client
- ▶ Microsoft SQL Server Compact 4.0
- ▶ Pentium class 1GHz processor (or equivalent)

- ► 512MB RAM
- ▶ 650MB disc space plus 50MB for each downloaded practice exam

The software installation process is routine compared to other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the CD sleeve.

The following steps outline the installation process:

- **1.** Insert the CD into your PC.
- 2. The software that automatically runs is the Pearson software to access and use all CD-based features. From the main menu, click the option to Install the Exam Engine.
- **3.** Respond to windows prompts as with any typical software installation process.

The installation process gives you the option to activate your exam with the activation code supplied on the paper in the CD sleeve. This process requires that you establish a Pearson website login. You need this login to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam

After the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process) as follows:

- **1.** Start the Pearson IT Certification Practice Test software from the Windows Start menu or from your desktop shortcut icon.
- **2.** To activate and download the exam associated with this book, from the My Products or Tools tab, click the **Activate** button.
- **3.** At the next screen, enter the activation key from the paper inside the cardboard CD holder in the back of the book. Once entered, click the **Activate** button.
- 4. The activation process will download the practice exam. Click **Next**, and then click **Finish**.

xxviii CompTIA Security+ SY0-401 Exam Cram

After you've completed the activation process, the My Products tab should list your new exam. If you do not see the exam, make sure you have selected the **My Products** tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the **Open Exam** button.

To update a particular exam you have already activated and downloaded, simply select the **Tools** tab and click the **Update Products** button. Updating your exams ensures you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson Cert Practice Test exam engine software, simply select the **Tools** tab and click the **Update Application** button. This ensures you are running the latest version of the software engine.

Activating Other Exams

The exam software installation process and the registration process only has to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another new Pearson IT Certification Cert Guide or Cisco Press Official Cert Guide, extract the activation code from the CD sleeve in the back of that book; you don't even need the CD at this point. From there, all you have to do is start the exam engine (if it is not still up and running) and perform steps 2–4 from the previous list.

Premium Edition

In addition to the free practice exams provided with your purchase, you can purchase one additional exam with expanded functionality directly from Pearson IT Certification. The Premium Edition eBook and Practice Test for this title contains an additional full practice exam as well as an eBook (in both PDF and ePub format). In addition, the Premium Edition title also has remediation for each question to the specific part of the eBook that relates to that question.

If you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. There is a coupon code in the CD sleeve that contains a one-time-use code as well as instructions for where you can purchase the Premium Edition.

To view the premium edition product page, go to http://www.pearsonitcertification.com/store/product.aspx?isbn=0132939592.

This page intentionally left blank

CHAPTER 2 Network Implementation

This chapter covers the following official CompTIA Security+ SY0-401 exam objectives:

- Given a scenario, implement common protocols and services
- Given a scenario, troubleshoot security issues related to wireless networking

(For more information on the official CompTIA Security+ SY0-401 exam topics, see the "About the CompTIA Security+ SY0-401 Exam" section in the Introduction.)

The network infrastructure is subject to myriad internal and external attacks through services, protocols, and open ports. It is imperative that you understand how to properly implement services and protocols, especially if the network has been in existence for some period of time and some services are no longer needed or have been forgotten. To stop many would-be attackers, you must understand how protocols are used on the network, what common ports are used by network protocols, and how to securely implement a wireless network.

This chapter discusses these concepts to help you understand how to use the proper network implementation of protocols and services as a tool to protect and mitigate threats against network infrastructure based on organizational needs. It also has a section specifically dedicated to wireless security implementation based on organization requirements.

Given a Scenario, Implement Common Protocols and Services

- Protocols
- Ports
- OSI relevance

CramSaver

If you can correctly answer these questions before going through this section, save time by skimming the Exam Alerts in this section and then completing the Cram Quiz at the end of the section.

- 1. Explain how IPsec is used, including the OSI model layer it operates on.
- 2. Explain what ICMP is and how it is used in a networking environment.
- 3. What are the major differences between IPv4 and IPv6?
- 4. Explain the purpose of ports 137, 138, and 139.
- 5. Explain what services/protocols operate on port 22.

Answers

- The Internet Protocol Security (IPsec) authentication and encapsulation standard is widely used to establish secure VPN communications. The use of IPsec can secure transmissions between critical servers and clients. This helps prevent attacks from taking place. Unlike most security systems that function within the application layer of the Open Systems Interconnection (OSI) model, IPsec functions within the network layer.
- 2. Internet Control Message Protocol (ICMP) is a protocol meant to be used as an aid for other protocols and system administrators to test for connectivity and search for configuration errors in a network. Ping uses the ICMP echo function and is the lowest-level test of whether a remote host is alive. A small packet containing an ICMP echo message is sent through the network to a particular IP address. The computer that sent the packet then waits for a return packet. If the connections are good and the target computer is up, the echo message return packet will be received.
- The differences between IPv4 and IPv6 are in five major areas: addressing and routing, security, network address translation, administrative workload, and support for mobile devices.
- 4. These are NetBIOS ports that are required for certain Windows network functions such as file sharing. But these ports also provide information about your computer that can be exploited by attackers. They also contain vulnerabilities that are widely used to break into systems and exploit them in various ways.

51

5. Secure Shell (SSH), Secure File Transfer Protocol (SFTP), and Secure Copy Protocol (SCP) are all protocols that operate on port 22. SSH is used to securely access a remote computer. SFTP is used for FTP access and encrypts both commands and data. SCP is used to securely transfer files to a remote host.

Protocols

Internet Protocol Security

The *Internet Protocol Security* (IPsec) authentication and encapsulation standard is widely used to establish secure VPN communications. The use of IPsec can secure transmissions between critical servers and clients. This helps prevent network-based attacks from taking place. Unlike most security systems that function within the application layer of the OSI model, IPsec functions within the network layer. IPsec provides authentication services and encapsulation of data through support of the Internet Key Exchange (IKE) protocol.

The asymmetric key standard defining IPsec provides two primary security services:

- ► Authentication Header (AH): This provides authentication of the data's sender, along with integrity and nonrepudiation. RFC 2402 states that AH provides authentication for as much of the IP header as possible, as well as for upper-level protocol data. However, some IP header fields might change in transit, and when the packet arrives at the receiver, the value of these fields might not be predictable by the sender. The values of such fields cannot be protected by AH. So, the protection provided to the IP header by AH is somewhat piecemeal.
- ▶ Encapsulating Security Payload (ESP): This supports authentication of the data's sender and encryption of the data being transferred along with confidentiality and integrity protection. ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an antireplay service (a form of partial sequence integrity), and limited traffic-flow confidentiality. The set of services provided depends on options selected at the time of security association establishment and on the placement of the implementation. Confidentiality may be selected independently of all other services. However, the use of confidentiality without integrity/authentication (either in ESP or separately in AH) might subject traffic to certain forms of active attacks that could undermine the confidentiality service.

Protocols 51 and 50 are the AH and ESP components of the IPsec protocol. IPsec inserts ESP or AH (or both) as protocol headers into an IP datagram that immediately follows an IP header.

The protocol field of the IP header will be 50 for ESP or 51 for AH. If IPsec is configured to do authentication rather than encryption, you must configure an IP filter to let protocol 51 traffic pass. If IPsec uses nested AH and ESP, you can configure an IP filter to let only protocol 51 (AH) traffic pass.

IPsec supports the IKE protocol, which is a key management standard used to allow specification of separate key protocols to be used during data encryption. IKE functions within the Internet Security Association and Key Management Protocol (ISAKMP), which defines the payloads used to exchange key and authentication data appended to each packet.

The common key exchange protocols and standard encryption algorithms including asymmetric key solutions such as the Diffie-Hellman Key Agreement and Rivest-Shamir-Adleman (RSA) standards; symmetric key solutions such as the International Data Encryption Algorithm (IDEA) and Digital Encryption Standard (DES); Triple DES (3DES) and hashing algorithms, such as the message digest 5 (MD5) and Secure Hash Algorithm (SHA)—are covered in detail in Chapter 12, "Cryptography Tools and Techniques."

Although IPsec by itself does not control access to the wireless local-area network (WAN), it can be used in conjunction with 802.1X to provide security for data being sent to client computers that are roaming between access points (AP) on the same network. For better security, segment the wireless network by placing a firewall between the WLAN and the remainder of the network. Because IPsec is a solution to securely authenticate and encrypt network IP packets, you can use IPsec to provide strong security between a Remote Authentication Dial-In User Service (RADIUS) server and a domain controller, or to secure traffic to a partner organization's RADIUS servers. RADIUS provides authentication and access control within an enterprise network and is explained in greater detail in Chapter 10, "Authentication, Authorization, and Access Control." Many of the VPN solutions use IPsec, and, like a virtual private network (VPN), IPsec is an excellent solution in many circumstances. However, it should not be a direct alternative for WLAN protection implemented at the network hardware layer.

Simple Network Management Protocol

Older protocols that are still in use might leave the network vulnerable. Protocols such as Simple Network Management Protocol (SNMP) and Domain Name Service (DNS) that were developed a long time ago and have

53

been widely deployed can pose security risks, too. *SNMP* is an application layer protocol whose purpose is to collect statistics from TCP/IP devices. SNMP is used for monitoring the health of network equipment, computer equipment, and devices such as uninterruptible power supplies (UPS). Many of the vulnerabilities associated with SNMP stem from using SNMPv1. Although these vulnerabilities were discovered in 2002, vulnerabilities are still being reported with current SNMP components. A recent Ubuntu Linux Security Advisory noted that vulnerabilities in Net-SNMP allow remote attackers to cause a denial of service.

The SNMP management infrastructure consists of three components:

- ► SNMP managed node
- ► SNMP agent
- ▶ SNMP network management station

The device loads the agent, which in turn collects the information and forwards it to the management station. Network management stations collect a massive amount of critical network information and are likely targets of intruders because SNMPv1 is not secure. The only security measure it has in place is its community name, which is similar to a password. By default, this is "public," and many times is not changed, thus leaving the information wide open to intruders. SNMPv2 uses message digest 5 (MD5) for authentication. The transmissions can also be encrypted. SNMPv3 is the current standard, but some devices are likely to still be using SNMPv1 or SNMPv2.

SNMP can help malicious users learn a lot about your system, making password-guessing attacks a bit easier than brute-force attacks. SNMP is often overlooked when checking for vulnerabilities because it uses User Datagram Protocol (UDP) ports 161 and 162. Make sure that network management stations are secure physically and secure on the network. You might even consider using a separate management subnet and protecting it using a router with an access list. Unless this service is required, you should turn it off.

Secure Shell

As a more secure replacement for the common command-line terminal utility Telnet, the *Secure Shell* (SSH) utility establishes a session between the client and host computers using an authenticated and encrypted connection. SSH requires encryption of all data, including the login portion. SSH uses the asymmetric (public key) RSA cryptography method to provide both connection and authentication. Data encryption is accomplished using one of the following algorithms:

- Encryption Algorithm (IDEA): The default encryption algorithm used by SSH, which uses a 128-bit symmetric key block cipher.
- Blowfish: A symmetric (private key) encryption algorithm using a variable 32- to 448-bit secret key.
- ▶ Data Encryption Standard (DES): A symmetric key encryption algorithm using a random key selected from a large number of shared keys. Most forms of this algorithm cannot be used in products meant for export from the United States.
- ▶ **Triple Data Encryption Standard (#DES):** A symmetric key encryption algorithm that dramatically improves upon the DES by using the DES algorithm three times with three distinct keys.

Using SSH helps guard against attacks such as eavesdropping, man-in-themiddle attacks, and spoofing. Attempts to spoof the identity of either side of a communication can be thwarted because each packet is encrypted using a key known only by the local and remote systems.

ExamAlert

Some versions of SSH, including the Secure Shell for Windows Server, provide a secure version of the File Transfer Protocol (SFTP) along with the other common SSH utilities.

Domain Name Service

Domain Name Service (DNS) was originally designed as an open protocol. DNS servers are organized in a hierarchy. At the top level of the hierarchy, root servers store the complete database of Internet domain names and their corresponding IP addresses. There are different types of DNS servers. The most common types are the following:

- ► Authoritative servers: Definitive for particular domains providing information about only those domains. An authoritative-only name server only returns answers to queries about domain names that have been specifically configured.
- **Caching servers:** Uses recursion to resolve a given name starting with the DNS root through to the authoritative name servers of the queried domain.

Internal DNS servers can be less susceptible to attacks than external DNS servers, but they still need to be secured. To stop outside intruders from accessing the internal network of your company, use separate DNS servers for internal and Internet name resolution. To provide Internet name resolution for internal hosts, you can have your internal DNS servers use a forwarder.

The following are some considerations for internal DNS servers:

- Eliminate any single point of failure by making sure that the structure is planned properly. Analyze where the clients of each DNS zone are located and how they will resolve names if the DNS server is unavailable.
- Prevent unauthorized access to your servers by implementing integrated zones with secure dynamic updates. Keep the list of DNS servers that are allowed to obtain a zone transfer small.
- Monitor the server events and DNS logs. Proper monitoring of logs and server events can help prevent unauthorized access as well as diagnose problems.

Transport Layer Security

Another asymmetric key encapsulation currently considered the successor to SSL is the Transport Layer Security (TLS) protocol, based on Netscape's Secure Sockets Layer 3.0 (SSL3) transport protocol, which provides encryption using stronger encryption methods, such as DES, or without encryption altogether if desired for authentication only. SSL and TLS transport are similar but not entirely interoperable. TLS also provides confidentiality and data integrity.

TLS has two layers of operation:

- ► **TLS Record Protocol:** This protocol allows the client and server to communicate using some form of encryption algorithm (or without encryption if desired).
- ▶ **TLS Handshake Protocol:** This protocol allows the client and server to authenticate one another and exchange encryption keys to be used during the session.

Secure Sockets Layer

Secure Sockets Layer (SSL) protocol communications occur between the HTTP (application) and TCP (transport) layers of Internet communications. SSL is used by millions of websites in the protection of their online transactions

with their customers. SSL is a public key-based security protocol that is used by Internet services and clients for authentication, message integrity, and confidentiality. The SSL process uses certificates for authentication and encryption for message integrity and confidentiality. SSL establishes what is called a *stateful connection*. In a stateful connection, both ends set up and maintain information about the session itself during its life. This is different from a stateless connection, where there is no prior connection setup. The SSL stateful connection is negotiated by a handshaking procedure between client and server. During this handshake, the client and server exchange the specifications for the cipher that will be used for that session. SSL communicates using an asymmetric key with cipher strength of 40 or 128 bits.

SSL works by establishing a secure channel using public key infrastructure (PKI). This can eliminate a vast majority of attacks, such as session hijackings and information theft.

You can secure communications when performing administration on wireless access points (WAP) by leveraging protocols such as SSH or HTTP with SSL or TLS. A WAP can implement access control functions to allow or deny access to the network and provides the capability of encrypting wireless traffic. It also has the means to query an authentication and authorization service for authorization decisions and securely exchange encryption keys with the client to secure the network traffic.

As a general rule, SSL is not as flexible as IPsec from an application perspective but is more flexible for access from any location. One must determine the usage requirements for each class of user and determine the best approach.

Transmission Control Protocol/Internet Protocol

The core of TCP/IP consists of four main protocols: the Internet Protocol (IP), the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Control Message Protocol (ICMP). IP is responsible for providing essential routing functions for all traffic on a TCP/IP network. TCP provides connection-oriented communication. UDP provides connectionless communications. TCP connections are initiated and terminated with a three-way handshake process. ICMP provides administrative services to TCP/IP networks.

TCP/IP's implementation of the OSI model makes functionality simpler by mapping the same seven layers of the OSI model to a four-layer model instead. Unlike the OSI reference model, the TCP/IP model focuses more on delivering interconnectivity than on functional layers. It does this by acknowledging the importance of a structured hierarchical sequence of

functions, yet leaves protocol designers flexibility for implementation. Table 2.1 compares the OSI and TCP/IP models.

OSI Reference Model	TCP/IP Reference Model
Application Presentation Session	Application
Transport	Transport
Network	Internet
Data link	Network access Physical

TABLE 2.1 OSI and TCP/IP Model Comparison

File Transfer Protocol Secure

FTP passes the username and password in a plain-text form, allowing packet sniffing of the network traffic to read these values, which may then be used for unauthorized access to the server. *FTPS*, also known as *FTP Secure* and *FTP-SSL*, is an FTP extension that adds support for TLS and SSL. FTPS supports channel encryption as defined in RFC 2228.

With FTPS, data transfers take place in a way designed to allow both parties to authenticate each other and to prevent eavesdropping, tampering, and forgery on the messages exchanged. FTPS includes full support for the TLS and SSL cryptographic protocols, including the use of server-side public key authentication certificates and client-side authorization certificates. It also supports compatible ciphers, including AES, RC4, RC2, Triple DES and DES, as well as hash functions SHA1, MD5, MD4, and MD2.

You should use FTPS when you need to transfer sensitive or confidential data between a client and a server that is configured to use SSL for secure transactions.

Secure variations of FTP ensure that data cannot be intercepted during transfer and allow the use of more secure transfer of user access credentials during FTP login. However, the same certificate vulnerabilities discussed earlier in this chapter apply here, too.

Hypertext Transport Protocol over Secure Sockets Layer

Basic web connectivity using Hypertext Transport Protocol (HTTP) occurs over TCP port 80, providing no security against interception of transacted data sent in clear text. An alternative to this involves the use of SSL transport protocols operating on port 443, which creates an encrypted pipe through

58 CHAPTER 2: Network Implementation

which HTTP traffic can be conducted securely. To differentiate a call to port 80 (http://servername/), HTTP over SSL calls on port 443 using HTTPS as the URL port designator (https://servername/).

HTTP Secure (HTTPS) was originally created by the Netscape Corporation and used a 40-bit RC4 stream encryption algorithm to establish a secured connection encapsulating data transferred between the client and web server, although it can also support the use of X.509 digital certificates to allow the user to authenticate the sender. Now, 256-bit encryption keys have become the accepted level of secure connectivity for online banking and electronic commerce transactions.

ExamAlert

An alternative to HTTPS is the Secure Hypertext Transport Protocol (S-HTTP), which was developed to support connectivity for banking transactions and other secure web communications. S-HTTP supports DES, 3DES, RC2, and RSA2 encryption, along with Challenge Handshake Authentication Protocol (CHAP) authentication but was not adopted by the early web browser developers (for example, Netscape and Microsoft) and so remains less common than the HTTPS standard.

Although HTTPS encrypts communication between the client and server, it does not guarantee that the merchant is trustworthy or that the merchant's server is secure. SSL/TLS is designed to positively identify the merchant's server and encrypt communication between the client and server.

Secure Copy Protocol

The *Secure Copy Protocol* (SCP) is a network protocol that supports file transfers. SCP is a combination of RCP and SSH. It uses the BSD RCP protocol tunneled through the SSH protocol to provide encryption and authentication. The RCP performs the file transfer, and the SSH protocol performs authentication and encryption. SCP runs on port 22 and protects the authenticity and confidentiality of the data in transit. It thwarts the ability for packet sniffers to extract information from data packets.

An SCP download request is server driven, which imposes a security risk when connected to a malicious server. SCP has been mostly superseded by the more comprehensive SFTP, and some implementations of the SCP utility actually use SFTP instead.

Internet Control Message Protocol

Internet Control Message Protocol (ICMP) is a protocol meant to be used as an aid for other protocols and system administrators to test for connectivity and search for configuration errors in a network. Ping uses the ICMP echo function and is the lowest-level test of whether a remote host is alive. A small packet containing an ICMP echo message is sent through the network to a particular IP address. The computer that sent the packet then waits for a return packet. If the connections are good and the target computer is up, the echo message return packet will be received. It is one of the most useful network tools available because it tests the most basic function of an IP network. It also shows the Time To Live (TTL) value and the amount of time it takes for a packet to make the complete trip, also known as *round-trip time* (RTT), in milliseconds (ms). One caveat with using ICMP: It can be manipulated by malicious users, so some administrators block ICMP traffic. If that is the case, you will receive a request timeout even though the host is available.

Traceroute is a computer network diagnostic tool for displaying the route (path) and measuring transit delays of packets across an IP network. Traceroute outputs the list of traversed routers in simple text format, together with timing information. Traceroute is available on most operating systems. On Microsoft Windows operating systems, it is named tracert. Traceroute uses an ICMP echo request packet to find the path. It sends an echo reply with the TTL value set to 1. When the first router sees the packet with TTL 1, it decreases it by 1 to 0 and discards the packet. As a result, it sends an ICMP Time Exceeded message back to the source address. The source address of the ICMP error message is the first router address. Now the source knows the address of the first router. Generally, three packets are sent at each TTL, and the RTT is measured for each one. Most implementations of traceroute keep working until they have gone 30 hops, but this can be extended up to 254 routers.

Pathping is a Windows route-tracing tool that combines features of the ping and tracert commands with additional information. The command uses traceroute to identify which routers are on the path. When the traceroute is complete, pathping sends pings periodically to all the routers over a given time period and computes statistics based on the number of packets returned from each hop. By default, pathping pings each router 100 times, with a single ping every 0.25 seconds. Consequently, a default query requires 25 seconds per router hop. This is especially helpful in identifying routers that cause delays or other latency problems on a connection between two IP hosts.

IPv4

IPv4 is a connectionless protocol for use on packet-switched networks. It operates on a best effort delivery model, in that it does not guarantee delivery, nor does it ensure proper sequencing or avoidance of duplicate delivery. These aspects, including data integrity, are addressed by an upper-layer transport protocol, such as TCP. IPv4 currently routes the majority of Internet traffic. IPv4 is widely used in both internal and external networks throughout the world.

IPv4 is susceptible to ping sweeps, port scans, and application and vulnerability scans. To mitigate sweeps and scans, filtering messages or traffic types is an acceptable solution because it is impossible to eliminate reconnaissance activity.

IPv6

Because of the increased demand of devices requiring IP addresses, IPv4 could not keep up with such an expansive demand. As a result, a new method was needed to address all the new devices requiring IP addresses. The Internet Engineering Task Force (IETF) published a new standard for IP addresses in RFC 2460. The new standard, *IPv6*, makes several changes to the older IPv4 standard. IPv6 increases the address size from IPv4 32 bits to 128 bits.

The differences between IPv6 and IPv4 are in five major areas: addressing and routing, security, network address translation, administrative workload, and support for mobile devices. Table 2.2 provides a comparison of some of the differences between IPv4 and IPv6.

IPv4	IPv6
Addresses are 32 bits (4 bytes) in length.	Addresses are 128 bits (16 bytes) in length.
Header includes a checksum and options.	Header does not include a checksum, and all optional data is moved to IPv6 extension headers.
ARP uses broadcast request frames to resolve an IP address to a link-layer address.	Multicast Neighbor Solicitation messages are used to resolve IP addresses to link- layer addresses.
IPv4 header does not identify packet flow for quality of service (QoS).	IPv6 header identifies packet flow for QoS.

TABLE 2.2 IPv4 and IPv6 Comparison

IPv4	IPv6
IPsec support is optional.	IPsec support is required.
IPv4 limits packets to 64 KB of payload.	IPv6 has optional support for jumbograms, which can be as large as 4 GB.
Must be configured either manually or through Dynamic Host Configuration Protocol (DHCP).	Does not require manual configuration or DHCP.

In addition to the difference in the address structure in IPv6, there are IPv6 versions of protocols and commands. The following are some of the more prevalent ones:

- ▶ DHCPv6: Provides stateful address configuration or stateless configuration settings to IPv6 hosts.
- ▶ EIGRPv6: Enhanced Interior Gateway Routing Protocol (EIGRP) is a routing protocol that was developed by Cisco. EIGRPv6 runs on IPv6 networks. It operates in the same manner as the IPv4 version, except that is routes IPv6 addresses.
- ► ICMPv6: Used by IPv6 nodes to report packet processing errors and diagnostics.
- ▶ **Pingv6:** Used in the same capacity as Ping except for IPv6 addresses. On Windows-based machines, is used, and on Linux/UNIX-based machines is used.

Internet Small Computer System Interface

Internet Small Computer System Interface (iSCSI) is an IP-based storage networking standard for linking data storage facilities. iSCSI is used for faster data transfers over intranets and handling remote storage access mainly in local-area networks (LAN) and WANs. It can be used in cloud environments as well, allowing remote resources to appear as local.

Businesses choose iSCSI because of ease of installation, cost, and utilization of current Ethernet networks. iSCSI clients or initiators send SCSI commands to SCSI targets on remote servers to communicate. iSCSI typically uses TCP port 860, with the target service using port 3260. iSCSI uses IPsec for protection. IPsec provides greater levels of security and integrity, as mentioned earlier in this section.

Fibre Channel

Fibre Channel (FC) is a gigabit network technology predominantly used to link data storage facilities or a storage-area network (SAN). FC is similar to iSCSI, but requires a Fibre Channel infrastructure. An FC infrastructure generally is more costly and complex to manage due to the separate network switching infrastructure. FC uses the Fibre Channel Protocol (FCP) to transport SCSI commands over the network consisting of ports and fabric. FC allows devices to attach through an interconnected switching system called a *fabric*. An FC port is not the same thing as computer port or network port. It is the node path performing data communications over the channel. The fiber may attach to a node port (N_Port) and to a port of the fabric (F_Port). The FC port manages a point-to-point connection between itself and the fabric.

FC network protection is primarily security through obscurity because direct access to the FC network is not available to most users, but this does not eliminate the need for security. Approved in 2004, the Fibre Channel Security Protocols standard (FC-SP) specifies how to protect against security breaches. This standard defines protocols for authentication, session keys, integrity and confidentiality, and policy implementation across an FC fabric. Basic FC security occurs through authentication and access control. To secure FC, authentication between FC devices and other devices with whom they communicate can be established using mutual authentication. Proper access control can be achieved through port locking, hard zoning, logical unit number (LUN) masking, and using secure management interfaces and protocols.

Fiber Channel over Ethernet

Fiber Channel over Ethernet (FCoE) is similar in concept to FC except that it allows Ethernet as a method of linking devices to storage. FC traffic runs over an Ethernet infrastructure by encapsulating FC over the Ethernet portions of the connectivity, allowing FC to run alongside IP traffic. FC traffic is used for the server applications, FC SAN, and FC storage. Because FCoE allows FC to be carried over Ethernet, the amount of equipment required in the data center can be reduced. FCoE uses a converged network adapter (CNA), lossless Ethernet links, and an FCoE switch.

Organizations often choose FCoE to maintain or evolve their existing FC network. SAN basic security flaws include weaknesses with authentication and authorization. FCoE can be secured in the manners suggested for FC but also includes control-plane protection and data-plane protection. Control-plane protection is access protection for the switches. Data-plane protection is security for traffic passing through the switches.

File Transfer Protocol

File Transfer Protocol (FTP) servers provide user access to upload or download files between client systems and a networked FTP server. FTP servers include many potential security issues, including anonymous file access and unencrypted authentication. Many FTP servers include the ability for anonymous access in their default installation configuration. Anonymous access is a popular method to provide general access to publicly available information. The problem with this form of access is that any user may download (and potentially upload) any file desired. This might result in a server's available file storage and network access bandwidth being rapidly consumed for purposes other than those intended by the server's administrator. If unauthorized file upload is allowed along with download, illegal file content could be placed on the server for download, without the knowledge of the system's administrator.

Even when user authentication is required, FTP passes the username and password in an unencrypted (plain-text) form, allowing packet sniffing of the network traffic to read these values, which may then be used for unauthorized access. To mitigate FTP vulnerabilities, actions such as disabling anonymous access, hardening access control lists (ACL), enabling logging and disk quotas, setting access restrictions by IP, and enabling "blind" puts can be implemented. Using more secure variations of FTP ensures that data cannot be intercepted during transfer and allows the use of more secure transfer of user access credentials during FTP login.

Secure File Transfer Protocol

Secure File Transfer Protocol (SFTP), or Secure FTP, is a program that uses SSH to transfer files. Unlike standard FTP, it encrypts both commands and data, preventing passwords and sensitive information from being transmitted in the clear over the network. It is functionally similar to FTP, but because it uses a different protocol, you cannot use a standard FTP client to talk to an SFTP server, nor can you connect to an FTP server with a client that supports only SFTP.

ExamAlert

A more secure version of FTP (SFTP) has been developed that includes SSL encapsulation. This version is referred to as FTP over SSH and uses the SSH TCP port 22. Do not confuse it with FTPS (FTP over SSL), which uses TCP ports 989 and 990. Either may be used within a modern enterprise network.

Trivial File Transfer Protocol

Trivial File Transfer Protocol (TFTP) is a simple version of FTP used for transferring files between network devices. TFTP uses UDP port 69, has no login feature, and because it is implemented using UDP generally works only on LANs. TFTP works with either Bootstrap Protocol (BOOTP) or DHCP.

Because of the lack of security in TFTP, it is a good idea to place the TFTP server behind a firewall on an isolated LAN that only the essential equipment can reach.

Telnet

Telnet is a terminal emulation program used to access remote routers and UNIX systems. Telnet can be used as a tool to determine whether the port on a host computer is working properly. Telnet passes the username, password, and even transacted data in an unencrypted form (clear text), allowing packet sniffing of the network traffic to read these values, which may then be used for unauthorized access to the server. Telnet-type clear-text connections create the ideal situation for TCP hijacking and man-in-themiddle attacks. Methods for mitigating Telnet vulnerabilities include using enhanced encryption or authentication security such as Kerberos, IPsec, SSH, SSL, or Cisco Secure Telnet.

Hypertext Transport Protocol

Hypertext Transfer Protocol (HTTP) allows users to connect to sources of information, services, products, and other functionality through the Internet. Business transactions, membership information, vendor/client communications, and even distributed business logic transactions can all occur though HTTP using basic Internet connectivity on TCP port 80.

An HTTP message contains a header and a body. The message header of an HTTP request has a request line and a collection of header fields. All HTTP messages must include the protocol version. Some HTTP messages can contain a content body, which is optional. The original HTTP specification has little support for the security mechanisms appropriate for today's Internet transactions. Methods for mitigating HTTP vulnerabilities include using enhanced encryption or authentication security HTTPS or SSL.

NetBIOS

Network Basic Input/Output System (NetBIOS) is an application programming interface (API) providing various networking services. NetBIOS provides

name, datagram, and session services, allowing applications on different computers to communicate within a LAN. The session mode establishes a connection and provides error detection. The datagram mode is connectionless and supports LAN broadcast. NetBIOS is most commonly found in use with Microsoft Windows operating systems. Because it does not support routing, NetBIOS must be used with another transport mechanism such as TCP when it is implemented in an organization that has a WAN.

Ports

There are 65,535 TCP and UDP ports on which a computer can communicate. The port numbers are divided into three ranges:

- ▶ Well-known ports: The well-known ports are those from 0 through 1,023.
- ▶ **Registered ports:** The registered ports are those from 1,024 through 49,151.
- ▶ **Dynamic/private ports:** The dynamic/private ports are those from 49,152 through 65,535.

Often, many of these ports are not secured and, as a result, are used for exploitation. Table 2.3 lists some of the most commonly used ports and the services and protocols that use them. Many of these ports and services have vulnerabilities associated with them. It is important that you know what common ports are used by network protocols and how to securely implement services on these ports.

ExamAlert

Know the difference between the various ports that are used for network services and protocols.

Port	Service/Protocol
15	Netstat
20	FTP-Data transfer
21	FTP-Control (command)
22	SSH/SFTP/SCP

TABLE 2.3 Commonly Used Ports

Port	Service/Protocol
23	Telnet
25	SMTP
53	DNS
69	TFTP
80	HTTP
110	POP3
137, 138, 139	NetBIOS
143	IMAP
161/162	SNMP
443	HTTPS
445	SMB
989/990	FTPS
1,812	RADIUS
3389	RDP

Table 2.3 includes a list of protocols that may be currently in use on a network. These protocols, along with some older or antiquated protocols, may be configured open by default by the machine manufacturer or when an operating system is installed. Every operating system requires different services for it to operate properly. If ports are open for manufacturer-installed tools, the manufacturer should have the services listed in the documentation. Ports for older protocols such as Chargen (port 19) and Telnet (port 23) may still be accessible. For example, Finger, which uses port 79, was widely used during the early days of Internet, and today's sites no longer offer the service. However, you might still find some old implementations of Eudora mail that use the Finger protocol, or worse, the mail clients have long since been upgraded, but the port used 10 years ago was somehow left open. The quickest way to tell which ports are open and which services are running is to do a Netstat on the machine. You can also run local or online port scans.

The best way to protect the network infrastructure from attacks aimed at antiquated or unused ports and protocols is to remove any unnecessary protocols and create access control lists to allow traffic on necessary ports only. By doing so, you eliminate the possibility of unused and antiquated protocols being exploited and minimize the threat of an attack.

OSI Relevance

You should be very familiar with the OSI model as well as the common protocols and network hardware that function within each level. For example, you should know that hubs operate at the physical layer of the OSI model. Intelligent hubs, bridges, and network switches operate at the data link layer, and Layer 3 switches and routers operate at the network layer. The Network+ Exam Cram and Exam Prep books cover the OSI model in much more detail. If you will be working extensively with network protocols and hardware, you should also look at these texts.

The layers of the OSI model are as follows:

- 7. Application layer
- 6. Presentation layer
- **5.** Session layer
- 4. Transport layer
- 3. Network layer
- 2. Data link layer (subdivided into the Logical-Link Control [LLC] and Media Access Control [MAC] sublayers)
- 1. Physical layer

Most applications, like web browsers or email clients, incorporate functionality of the OSI layers 5, 6, and 7.

CramQuiz

Cram Quiz

Answer these questions. The answers follow the last question. If you cannot answer these questions correctly, consider reading this section again until you can.

- 1. Which of the following is the correct address size for IPv6 addresses?
 - O A. 32 bit
 - **B.** 64 bit
 - O C. 128 bit
 - O **D.** 256 bit
- 2. Which of the following protocols runs on port 22 and protects the authenticity and confidentiality of file transfer data in transit?
 - O A. DHCP
 - O B. SSL
 - O **C.** FTP
 - O D. SCP
- **3.** You are troubleshooting connectivity issues on the network. Which of the following would be most helpful in determining where the connectivity issues lie?
 - O A. SNMP
 - O B. ICMP
 - O C. SSL
 - O D. IPsec
- 4. You want to be sure that the NetBIOS ports that are required for certain Windows network functions have been secured. Which of the following ports would you check?
 - O **A.** 25/110/143
 - O **B.** 161/162
 - O C. 137/138/139
 - **D.** 20/21
- 5. Your company is in the process of setting up a management system on your network, and you want to use SNMP. You have to allow this traffic through the router. Which UDP ports do you have to open? (Choose two correct answers.)
 - **A.** 161
 - **B.** 139
 - O **C.** 138
 - O **D.** 162

- **6.** Which standard port is used to establish a web connection using the 40-bit RC4 encryption protocol?
 - O A. 21
 - O **B.** 80
 - O **C.** 443
 - O **D.** 8,250

Cram Quiz Answers

- 1. C. IPv6 increases the address size from IPv4 32 bits to 128 bits. Answers A, B, and D are incorrect because IPv6 addresses sizes are 128 bit.
- 2. D. SCP runs on port 22 and protects the authenticity and confidentiality of the data in transit. Answer A is incorrect because DHCP is used to automatically assign IP addresses. Answer B is incorrect because SSL is a public key-based security protocol that is used by Internet services and clients for authentication, message integrity, and confidentiality. The standard port for SSL is port 443. Answer C is incorrect because in FTP the data is not protected.
- **3. B**. Traceroute uses an ICMP echo request packet to find the path between two addresses. Answer A is incorrect because SNMP is an application layer protocol whose purpose is to collect statistics from TCP/IP devices. SNMP is used for monitoring the health of network equipment, computer equipment, and devices such as uninterruptible power supplies (UPS). Answer C is incorrect because SSL is a public key-based security protocol that is used by Internet services and clients for authentication, message integrity, and confidentiality. Answer D is incorrect because IPsec authentication and encapsulation standard is widely used to establish secure VPN communications.
- **4. C**. There are NetBIOS ports that are required for certain Windows network functions, such as file sharing, which are 137, 138, and 139. Answer A is incorrect because these ports are used for email. Answer B is incorrect because these ports are used for SNMP. Answer D is incorrect because these ports are used for FTP.
- 5. A and D. UDP ports 161 and 162 are used by SNMP. Answer B is incorrect because UDP port 139 is used by the NetBIOS session service. Answer C is incorrect because port 138 is used to allow NetBIOS traffic for name resolution.
- 6. C. A connection using HTTPS is made using the RC4 cipher and port 443. Answer A is incorrect because port 21 is used for FTP connections. Answer B is incorrect because port 80 is used for unsecure plain-text HTTP communications. Answer D is incorrect because port 8,250 is not designated to a particular TCP/IP protocol.

Given a Scenario, Troubleshoot Security Issues Related to Wireless Networking

- WPA
- WPA2
- ► WEP
- ► EAP
- PEAP
- LEAP
- MAC filter
- Disable SSID broadcast
- TKIP
- CCMP
- Antenna placement
- Power-level controls
- Captive portals
- Antenna types
- Site surveys
- VPN (over open wireless)

CramSaver

If you can correctly answer these questions before going through this section, save time by skimming the Exam Alerts in this section and then completing the Cram Quiz at the end of the section.

- 1. Explain the difference between PEAP and LEAP.
- 2. Explain how to improve the security of wireless networks with regard to SSIDs.
- 3. Explain what CCMP is.

Answers

1. PEAP provides several benefits within TLS, including an encrypted authentication channel, dynamic keying material from TLS, fast reconnect using cached session keys, and server authentication that protects against the setting up of unauthorized access points. LEAP is a proprietary EAP method because it requires the use of a Cisco AP. It features mutual authentication, secure session key derivation, and dynamic per-user, per-session WEP keys.

- 2. To improve the security of your network, change the SSID. Using the default SSID poses a security risk even if the AP is not broadcasting it. When changing default SSIDs, do not change the SSID to reflect your company's main names, divisions, products, or address. Turning off SSID broadcast does not effectively protect the network from attacks.
- Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) is an encryption protocol that forms part of the 802.11i standard for wireless local-area networks (WLAN). CCMP uses 128-bit keys with a 48-bit initialization vector (IV) that reduces vulnerability to replay attacks.

WPA

Wireless security comes in two major varieties: Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). Both include methods to encrypt wireless traffic between wireless clients and WAPs. WEP has been included in 802.11-based products for some time and includes a strategy for restricting network access and encrypting network traffic based upon a shared key. The Wi-Fi Protected Access (WPA and WPA2) standards were developed by the Wi-Fi Alliance to replace the WEP protocol. WPA was developed after security flaws were found in WEP. WPA protects networks by incorporating a set of enhanced security features. WPA-protected networks require users to enter a passkey to access a wireless network. There are two different modes of WPA: WPA-PSK (Personal Shared Key) mode and WPA-802.1X mode, which is more often referred to as WPA-RADIUS or WPA-Enterprise. For the PSK mode, a passphrase consisting of 8 to 63 ASCII characters is all that is required. The Enterprise mode requires the use of security certificates. WPA includes many of the functions of the 802.11i protocol but relies on Rivest Cipher 4 (RC4), which is considered vulnerable to keystream attacks.

WPA2

WPA2 is based on the IEEE 802.11i standard and provides governmentgrade security by implementing the AES encryption algorithm and 802.1X-based authentication. AES is a block cipher that encrypts 128-bit blocks of data at a time with a 128-bit encryption key. WPA2 incorporates stricter security standards and is configurable in either the PSK or Enterprise mode. There are two versions of WPA2: WPA2-Personal and WPA2-Enterprise. WPA2-Personal protects unauthorized network access via a password. WPA2-Enterprise verifies network users through a server. WPA2 is backward compatible with WPA and supports strong encryption and authentication for both infrastructure and ad hoc networks. In addition, it has support for the CCMP (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol) encryption mechanism based on the Advanced Encryption Standard (AES) cipher as an alternative to the Temporal Key Integrity Protocol (TKIP). TKIP is an encryption protocol included as part of the IEEE 802.11i standard for WLANs. An AES-based encryption mechanism that is stronger than TKIP.

WEP

Wired Equivalent Privacy (WEP) is the most basic form of encryption that can be used on 802.11-based wireless networks to provide privacy of data sent between a wireless client and its AP. Originally, many wireless networks were based on the IEEE 802.11 standard, which had serious data transmission security shortcomings. When this standard was put into place, the 802.11 committee adopted an encryption protocol called WEP. To discuss WEP's shortcomings, we have to understand how it operates. WEP uses a stream cipher for encryption called RC4. RC4 uses a shared secret key to generate a long sequence of bytes from what is called a *generator*. This stream is then used to produce the encrypted ciphertext. Early 802.11b networks used 40-bit encryption because of government restrictions. Hackers can crack a 40-bit key in a few hours. It is much easier to break RC4 encryption if a second instance of encryption with a single key can be isolated. In other words, the weakness is that the same keys are used repeatedly. Specifications for the WEP standard are detailed within the 802.11b (Wi-Fi) specification. This specification details a method of data encryption and authentication that may be used to establish a more secured wireless connection.

ExamAlert

Developments in the field of cryptography revealed the WEP encryption method to be less secure than originally intended and vulnerable to cryptographic analysis of network traffic. More advanced protocols such as WPA2 and the 802.11i standard supersede WEP, but recommendations for a more secure wireless network may also include the use of IPsec and VPN connectivity to tunnel data communications through a secured connection.

Although using WEP is much better than no encryption at all, it's important to understand its limitations so that you have an accurate picture of the consequences and what you must do to properly protect your wireless environment. Given a Scenario, Troubleshoot Security Issues Related to Wireless Networking

EAP

The *802.1X standard* is a means of wireless authentication. The *802.1X* authentication standard is an extension of point-to-point protocol (PPP) that relies on the Extensible Authentication Protocol (EAP) for its authentication needs. EAP is a challenge-response protocol that can be run over secured transport mechanisms. It is a flexible authentication technology and can be used with smart cards, one-time passwords, and public key encryption. It also allows for support of public certificates deployed using auto enrollment or smart cards. These security improvements enable access control to Ethernet networks in public places such as malls and airports. EAP-Transport Layer Security (EAP-TLS) uses certificate-based mutual authentication, negotiation of the encryption method, and encrypted key determination between the client and the authenticating server.

EAP messages are encapsulated into 802.1X packets and are marked as EAP over LAN (EAPOL). After the client sends a connection request to a wireless AP, the authenticator marks all initial communication with the client as unauthorized, and only EAPOL messages are accepted while in this mode. All other types of communication are blocked until credentials are verified with an authentication server. Upon receiving an EAPOL request from the client, the wireless AP requests login credentials and passes them on to an authentication server. Remote Authentication Dial-In User Service (RADIUS) is usually employed for authentication purposes; however, 802.1X does not make it mandatory.

PEAP

Protected EAP (PEAP) was co-developed by Cisco, Microsoft Corporation, and RSA Security, Inc. PEAP provides several additional benefits within TLS, including an encrypted authentication channel, dynamic keying material from TLS, fast reconnect using cached session keys, and server authentication that protects against the setting up of unauthorized access points. PEAP is a means of protecting another EAP method (such as MS-CHAPv2) within a secure channel. The use of PEAP is essential to prevent attacks on password-based EAP methods. As part of the PEAP negotiation, the client establishes a TLS session with the RADIUS server. Using a TLS session as part of PEAP serves a number of purposes:

▶ It allows the client to authenticate the RADIUS server; this means that the client only establishes the session with a server holding a certificate that is trusted by the client.

- It protects the MS-CHAPv2 authentication protocol against packet snooping.
- ► The negotiation of the TLS session generates a key that can be used by the client and RADIUS server to establish common master keys. These keys are used to derive the keys used to encrypt the WLAN traffic.

Secured within the PEAP channel, the client authenticates itself to the RADIUS server using the MS-CHAPv2 EAP protocol. During this exchange, the traffic within the TLS tunnel is visible only to the client and RADIUS server and is never exposed to the WAP.

LEAP

Lightweight Extensible Authentication Protocol (LEAP) combines centralized two-way authentication with dynamically generated wireless equivalent privacy keys or WEP keys. LEAP was developed by Cisco for use on WLANs that use Cisco 802.11 wireless devices. LEAP is a proprietary EAP method because it requires the use of a Cisco AP. It features mutual authentication; secure session key derivation; and dynamic per-user, per-session WEP keys. However, because it uses unencrypted challenges and responses, LEAP is vulnerable to dictionary attacks. Still, when LEAP is combined with a rigorous user password policy, it can offer strong authentication security without the use of certificates. LEAP can only authenticate the user to the WLAN, not the computer. Without computer authentication, machine group policies will not execute correctly.

MAC Filter

Most wireless network routers and access points can filter devices based on their Media Access Control (MAC) address. The MAC address is a unique identifier for network adapters. *MAC filtering* is a security access control method whereby the MAC address is used to determine access to the network. When MAC address filtering is used, only the devices with MAC addresses configured in the wireless router or access point are allowed to connect. MAC filtering permits and denies network access through the use of blacklists and whitelists. A *blacklist* is a list of MAC addresses that are denied access. A *whitelist* is a list of MAC addresses that are allowed access. Blacklisting and whitelisting are discussed in further detail in Chapter 8, "Host Security."

While giving a wireless network some additional protection, it is possible to spoof the MAC address. An attacker could potentially capture details about

a MAC address from the network and pretend to be that device in order to connect. MAC filtering can be circumvented by scanning a valid MAC using a tool such as airodumping and then spoofing one's own MAC into a validated MAC address. After an attacker knows a MAC address that is out of the blacklist or within the whitelist, MAC filtering is almost useless.

Disable SSID Broadcast

A *service set identifier* (SSID) is used to identify WAPs on a network. The SSID is transmitted so that wireless stations searching for a network connection can find it. By default, SSID broadcast is enabled. This means that it accepts any SSID. When you disable this feature, the SSID configured in the client must match the SSID of the AP; otherwise, the client does not connect to the AP. Having SSID broadcast enabled essentially makes your AP visible to any device searching for a wireless connection.

To improve the security of your network, change the SSIDs on your APs. Using the default SSID poses a security risk even if the AP is not broadcasting it. When changing default SSIDs, do not change the SSID to reflect your company's main names, divisions, products, or address. This just makes you an easy target for attacks such as war driving and war chalking. *War driving* is the act of searching for Wi-Fi wireless networks by a person in a moving vehicle, using a portable computer or other mobile device. *War chalking* is the drawing of symbols in public places to advertise an open Wi-Fi network. Keep in mind that if an SSID name is enticing enough, it might attract hackers.

Turning off SSID broadcast does not effectively protect the network from attacks. Tools such as Kismet enable nonbroadcasting networks to be discovered almost as easily as broadcasting networks. From a security standpoint, it is much better to secure a wireless network using protocols that are designed specifically to address wireless network threats than to disable SSID broadcast.

ExamAlert

Turning off SSID broadcast does not effectively protect the network from attacks. It is much better to secure a wireless network using protocols that are designed specifically to address wireless network threats than to disable SSID broadcast.

TKIP

Temporal Key Integrity Protocol (TKIP) is the security protocol designed to replace WEP and is also known by its later iterations of *Wi-Fi Protected Access*

(WPA) or *WPA2*. Similar to WEP, TKIP uses the RC4 algorithm and does not require an upgrade to existing hardware, whereas more recent protocols, such as CCMP, which use the AES algorithm, do require an upgrade. TKIP was designed to provide more secure encryption than WEP by using the original WEP programming, but it wraps additional code at the beginning and end to encapsulate and modify it. To increase key strength, TKIP includes four additional algorithms: a cryptographic message integrity check, an IV sequencing mechanism, a per-packet key-mixing function, and a rekeying mechanism.

TKIP is useful for upgrading security on devices originally equipped with WEP, but does not address all security issues and might not be reliable enough for sensitive transmission. AES is a better choice and has become the accepted encryption standard for WLAN security.

CCMP

Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP) is an encryption protocol that forms part of the 802.11i standard for WLANs. CCMP offers enhanced security compared with similar technologies such as TKIP. AES is a block cipher that encrypts 128-bit blocks of data at a time with a 128-bit encryption key. The AES cipher suite uses the Counter-Mode Cipher Block Chaining (CBC) Message Authentication Code (MAC) Protocol (CCMP) as defined in RFC 3610. CCMP uses 128-bit keys with a 48-bit IV that reduces vulnerability to replay attacks. To provide for replay protection, a packet number (PN) field is used. CCMP produces a message integrity code (MIC) that provides data origin authentication and data integrity for the packet payload data. The PN is included in the CCMP header and incorporated into the encryption and MIC calculations. Counter mode makes it difficult for an eavesdropper to spot patterns, and the CBC-MAC message integrity method ensures that messages have not been tampered with.

Antenna Placement

When designing wireless networks, antenna placement and power output should be configured for maximum coverage and minimum interference. Four basic types of antennas are commonly used in 802.11 wireless networking applications: parabolic grid, yagi, dipole, and vertical. APs with factory-default omni antennas cover an area that is roughly circular and are affected by RF obstacles such as walls. When using this type of antenna, it is common to place APs in central locations or divide an office into quadrants. Many APs

use multiple-input, multiple-output (MIMO) antennas. This type of antenna takes advantage of multipath signal reflections. Ideally, locate the AP as close as possible to the antennas. The farther the signal has to travel across the cabling between the AP and the antenna, the more signal loss that occurs. Loss is an important factor when deploying a wireless network, especially at higher power levels. Loss occurs as a result of the signal traveling between the wireless base unit and the antenna.

APs that require external antennas need additional consideration. You need to configure the antennas properly, consider what role the AP serves (AP or bridge), and consider where the antennas are placed. When the antenna is mounted on the outside of the building or the interface between the wired network and the transceiver is placed in a corner, it puts the network signal in an area where it is easy to intercept. Antenna placement should not be used as a security mechanism.

Professional site surveys for wireless network installations and proper AP placement are sometimes used to ensure coverage area and security concerns. Up-front planning takes more time and effort but can pay off in the long run, especially for large WLANs.

ExamAlert

Physical placement and transmit power adjustments can make it harder for intruders to stay connected to your APs. But never count on physical placement alone to stop attackers.

Power-Level Controls

One of the principle requirements for wireless communication is that the transmitted wave must reach the receiver with ample power to allow the receiver to distinguish the wave from the background noise. An antenna that is too strong raises security concerns. Strong omnidirectional Wi-Fi signals are radiated to a greater distance into neighboring areas, where the signals can be readily detected and viewed. Minimizing transmission power reduces the chances your data will leak out. Companies such as Cisco and Nortel have implemented dynamic power controls in their products. The system dynamically adjusts the power output of individual access points to accommodate changing network conditions, helping ensure predictable wireless performance and availability.

ExamAlert

Reducing the energy consumption by wireless communication devices is an important issue in WLANs. Know the mechanisms that prevent interference and increase capacity.

Transmit power control is a mechanism used to prevent too much unwanted interference between different wireless networks. Adaptive transmit power control in 802.11 WLANs on a per-link basis helps increase network capacity and improves battery life of Wi-Fi-enabled mobile devices.

Captive Portals

The *captive portal* technique enables administrators to block Internet access for users until some action is taken. When a user attempts to access the Internet, the HTTP client is directed to a special web page that usually requires the user to read and accept an acceptable use policy (AUP). By using a captive portal, the web browser is used to provide authentication. Captive portals are widely used in businesses such as hotels and restaurants that offer free Wi-Fi hotspots to Internet users. A captive portal web page can be used to require authentication, require payment for usage, or display some type of policy or agreement. Although captive portals are mainly for Wi-Fi hotspots, you can also use them to control wired access.

Antenna Types

Wireless antenna types are either omnidirectional or directional. *Omnidirectional* antennas provide a 360-degree radial pattern to provide the widest possible signal coverage. An example of omnidirectional antennas are the antennas commonly found on APs. *Directional* antennas concentrate the wireless signal in a specific direction, limiting the coverage area. An example of a directional antenna is a yagi antenna.

The need or use determines the type of antenna required. When an organization wants to connect one building to another building, a directional antenna is used. If an organization is adding Wi-Fi internally to an office building or a warehouse, an omnidirectional antenna is used. If the desire is to install Wi-Fi in an outdoor campus environment, a combination of both antennas would be used.

Site Surveys

A *site survey* is necessary before implementing any WLAN solution, to optimize network layout within each unique location. This is particularly important in distributed wireless network configurations spanning multiple buildings or open natural areas, where imposing structures and tree growth may affect network access in key areas.

A site survey should include a review of the desired physical and logical structure of the network, selection of possible technologies, and several other factors, including the following:

- ▶ Federal, state, and local laws and regulations relating to the proposed network solution.
- Potential sources of radio frequency (RF) interference, including local broadcast systems as well as motors, fans, and other types of equipment that generate RF interference. This includes an analysis of potential channel overlap between WAP hardware.
- Available locations for WAP hardware installation and physical network integration connectivity.
- ► Any special requirements of users, applications, and network equipment that must function over the proposed wireless network solution.
- Whether a point-to-point (ad hoc or wireless bridge) or multipoint wireless solution is required. In most solutions, point-to-multipoint connectivity will be required to support multiple wireless clients from each WAP connected to the physical network.

ExamAlert

All wireless networks share several common security vulnerabilities related to their use of RF broadcasts, which may potentially be detected and compromised without the knowledge of the network administrator.

Data transported over this medium is available to anyone with the proper equipment, and so must be secured through encryption and encapsulation mechanisms no subject to public compromise.

VPN (Over Open Wireless)

VPNs are commonly used to securely connect employees to corporate networks when they are not in the office by using an Internet connection. More organizations are requiring hotspot visitors to VPN into the organizational network because they have no control over the security used in public Wi-Fi hotspots. The same principles that apply to wired VPNs can be applied to VPNs over open wireless networks. The use of a VPN over public Wi-Fi hotspots can increase privacy and provide data protection. VPNs over open wireless are not always immune to man-in-the-middle attacks. They can be susceptible to Wi-Fi-based attacks and VPN-based attacks.

Cram Quiz

Answer these questions. The answers follow the last question. If you cannot answer these questions correctly, consider reading this section again until you can.

- You want to implement non-vendor-specific strong authentication protocols for wireless communications. Which of the following would best meet your requirements? (Select two correct answers.)
 - O A. EAP
 - O B. PEAP
 - O C. LEAP
 - O D. WEP
- 2. Which of the following technologies would be selected when looking to reduce a vulnerability to replay attacks by using 128-bit keys with a 48-bit initialization vector (IV)?
 - O A. ICMP
 - O B. WEP
 - O C. WPA
 - O D. CCMP
- **3.** Which of the following technologies would be used by a hotel for guest acceptance of an acceptable use policy?
 - O A. Site survey
 - O B. MAC filtering
 - O C. VPN over wireless
 - O **D.** Captive portal

Cram Quiz Answers

- 1. A and B. The IEEE specifies 802.1X and EAP as the standard for secure wireless networking, and PEAP is standards based. PEAP provides mutual authentication and uses a certificate for server authentication by the client, while users have the convenience of entering password-based credentials. Answer C is incorrect because LEAP is a Cisco proprietary protocol. Answer D is incorrect because WEP is the most basic form of encryption that can be used on 802.11-based wireless networks to provide privacy of data sent between a wireless client and its access point.
- 2. D. CCMP uses 128-bit keys with a 48-bit IV that reduces vulnerability to replay attacks. Answer A is incorrect because ICMP is a network troubleshooting protocol. Answer B is incorrect because WEP is the most basic form of encryption that can be used on 802.11-based wireless networks. Answer C is incorrect because WPA protects networks by incorporating a set of enhanced security features. WPA-protected networks require users to enter a passkey in order to access a wireless network.

82 CHAPTER 2: Network Implementation

3. D. A captive portal web page can be used to require authentication, require payment for usage, or display some type of policy or agreement. Answer A is incorrect because a site survey is used to optimize network layout within each unique wireless location. Answer B is incorrect because MAC filtering is a security access control method whereby the MAC address is used to determine access to the network. Answer C is incorrect because the use of a VPN over public Wi-Fi hotspots can increase privacy and provide data protection, but is not used to force acceptance of an acceptable use policy.

What Next?

If you want more practice on this chapter's exam objectives before you move on, remember that you can access all the Cram Quiz questions on the CD. You can also create a custom exam by objective with the practice exam software. Note any objective that you struggle with and go to the material that covers that objective in this chapter.

Index

Symbols

3DES (Triple Data Encryption Standard), 54, 459 802.1X standard, 24, 73 / (slash) separator, 33

A

acceptable use policy, 88, 328 acceptance of risk, 96 access control, 195, 391-392, 412 account management, 421 continuous monitoring, 433-434 credential management, 424 disablement, 426-427 expiration, 425-426 generic account prohibition, 429-430 group-based privileges, 431-432 group policy, 424-425 lockout, 427 multiple accounts, 423 password complexity, 425 password history, 427-428 password length, 428-429 password reuse, 428 recovery, 426 shared accounts, 423 user access reviews, 433 user-assigned privileges, 432 ACL (access control list), 23, 375 authentication authentication factors, 413 CAC (common access card), 409 CHAP (Challenge-Handshake Authentication Protocol), 411 defined, 391, 407-408 HOTP (HMAC-based one-time password), 411 implicit deny, 412

Kerberos, 395-397 LDAP (Lightweight Directory Access Protocol), 397-398 multifactor authentication, 409-410 OTP (one-time password), 411 PAP (Password Authentication Protocol), 411 **RADIUS** (Remote Authentication Dial-In User Service), 394 SAML (Security Assertion Markup Language), 398 Secure LDAP, 398 smart cards, 409 SSO (single sign-on), 412 TACACS (Terminal Access Controller Access Control System), 394-395 tokens, 408 trusted OS, 412 **XTACACS** (Extended Terminal Access Controller Access Control System), 398 authorization ACL (access control list), 403-404 defined, 391, 402 discretionary access, 404-405 least privilege, 403 MAC (mandatory access control), 404 role-based access control, 406 rule-based access control, 405-406 separation of duties, 403 time-of-day restrictions, 406-407 defined, 391, 421 identification, 413 biometrics, 414-415 defined. 407 federation, 416

personal identity verification (PIV) card, 416 transitive trust/authentication, 417 usernames, 416 implicit deny, 25-26 NAC (network access control), 39-40 RBAC (rule-based access control), 20 remote access, 37 access control list (ACL), 23, 166, 375, 403-404 access logs, 265 access requestor (AR), 39 account management, 421 continuous monitoring, 433-434 credential management, 424 disablement, 426-427 expiration, 425-426 generic account prohibition, 429-430 group-based privileges, 431-432 group policy, 424-425 lockout, 427 multiple accounts, 423 password complexity, 425 password history, 427-428 password length, 428-429 password reuse, 428 recovery, 426 shared accounts, 423 user access reviews, 433 user-assigned privileges, 432 AccuTracking, 318 Acid Rain, 209 ACL (access control list), 23, 375, 403-404 active/passive configuration, 6 active versus passive tools, 278 add-ons, malicious, 252 addresses APIPA (Automatic Private IP Addressing), 37 link-local addresses, 36 MAC (Media Access Control) address, 5, 74-75

ULA (unique local address), 36 administrative controls, 170 Advanced Encryption Standard (AES). 455.459 adware, 205 AES (Advanced Encryption Standard). 455.459 AH (Authentication Header), 51, 466 AirMagnet, 244 aisles, hot/cold, 163 alarms, 168, 270 ALE (annualized loss expectancy), 92 alerts. 271 algorithms, 440 asymmetric encryption algorithms, 460-462 hash algorithms, 456-458 symmetric encryption algorithms, 458-460 Android systems, 383 annual rate of occurrence (ARO), 92 annualized loss expectancy (ALE), 92 annualized rate of occurrence (ARO), 85 anomaly-based IDSs, 10-11 antennas, 76-78 anti-malware, 336-339 antispam software, 337-338 antispyware software, 338 antivirus software 325, 336-337 **APIPA (Automatic Private IP** Addressing), 37 application attacks arbitrary/remote code execution, 257 browser threats, 251-252 buffer overflows, 254 code injections, 252 cookies, 255-257 directory traversal, 253 header manipulation, 253 integer overflows, 255 zero-day attacks, 253-254

application-aware devices, 15-16 application configuration baseline, 301-302 application control, 318-319 application firewalls, 386 application fuzzing, 294 application hardening, 302-305 Application log, 263 application patch management. 305-306 application security, 291, 321 application white listing, 323-324 authentication, 322 black listing, 342 BYOD (bring your own device), 324 acceptance-use policy, 328 architecture/infrastructure considerations, 328 corporate policies, 327 data ownership, 325 data privacy, 326 forensics, 326 legal concerns, 328 onboard camera/video, 329 onboarding/offboarding, 326-327 patch and antivirus management, 325 support ownership, 325 user acceptance, 327 credential management, 322 encryption, 323 fuzzing, 293-294 geotagging, 323 key management, 321-322 risk management, 103-104 secure coding concepts, 294-296 application configuration baseline, 301-302 application hardening, 302-305 application patch management, 305-306 client-side validation, 306-307 cross-site request forgery prevention, 299-301

error and exception handling, 296-297 input validation, 297-298 NoSOL versus SOL databases. 306 server-side validation, 306-307 XSS (cross-site scripting), 298-299 transitive trusts and authentication, 324 white listing, 342 AR (access requestor), 39 arbitrary code execution, 257 architecture considerations architecture review, 281 BYOD (bring your own device), 328 armored viruses, 213 ARO (annual rate of occurrence), 85.92 ARP poisoning, 221-223 assessment technique, 280-281 asset tracking, 319 asymmetric encryption, 443-444, 460-462 attack signatures, 272 attack surfaces, 280 attacks, 203 application attacks arbitrary/remote code execution, 257 browser threats, 251-252 buffer overflows, 254 code injections, 252 cookies, 255-257 directory traversal, 253 header manipulation, 253 integer overflows, 255 zero-day attacks, 253-254 ARP poisoning, 221-223 client-side attacks, 227 denial-of-service (DoS) attacks, 216-218 distributed DoS (DDoS) attacks, 218-220

536 attacks

> DNS poisoning, 220-221 malicious insider threat, 226-227 malware adware, 205 armored viruses, 213 backdoors, 210 botnets. 211-212 logic bombs, 210-211 polymorphic malware, 213 ransomware, 212-213 rootkits, 209-210 spyware, 207-208 Trojan horses, 208-209 viruses, 205-206 worms, 207 man-in-the-middle attacks, 216 password attacks, 227-230 phishing, 225-226 privilege escalation, 226 replay attacks, 220 social engineering attacks dumpster diving, 237-238 explained, 235-236 hoaxes, 238-239 impersonation, 238 principles of influence, 239-240 shoulder surfing, 236-237 tailgating, 238 spam, 224-225 spoofing, 223-224 transitive access, 227 typo squatting/URL hijacking, 230-231 watering hole attacks, 231 wireless attacks bluejacking, 244 bluesnarfing, 244 jamming/interference, 243 near-field communication (NFC), 247-248 packet sniffing, 245 rogue access points, 243-244 war driving, 244

WEP/WPA attacks, 245-246 WPS attacks, 247 attestation. 367 audits. 116-117. 265 authentication. 322. See also authorization authentication factors, 413 authentication tags, 450 CAC (common access card), 409 CHAP (Challenge-Handshake Authentication Protocol), 411 defined, 391, 407-408 HOTP (HMAC-based one-time password), 411 implicit deny, 412 Kerberos, 395-397 LDAP (Lightweight Directory Access Protocol), 397-398 multifactor authentication, 409-410 OTP (one-time password), 411 PAP (Password Authentication Protocol), 411 **RADIUS** (Remote Authentication Dial-In User Service), 394 SAML (Security Assertion Markup Language), 398 Secure LDAP, 398 smart cards, 409 SSO (single sign-on), 412 TACACS (Terminal Access Controller Access Control System), 394-395 tokens, 408 transitive trusts, 324 trusted OS, 412 **XTACACS** (Extended Terminal Access Controller Access Control System), 398 Authentication Header (AH), 51, 466 authenticators, 458 authoritative servers, 54 authority, 239 authorization. See also authentication ACL (access control list), 403-404

defined, 391, 402 discretionary access, 404-405 least privilege, 403 MAC (mandatory access control), 404 role-based access control, 406 rule-based access control, 405-406 separation of duties, 403 time-of-day restrictions, 406-407 Automatic Private IP Addressing (APIPA), 37 automotive in-vehicle computing systems, 385 availability, 197-198, 348-349 avoidance of risk, 96 awareness of risk, 106-107

В

BAA (business associate agreement), 105 backdoor Trojans, 208 backdoors, 210 backup plans/policies, 108-109, 186-187 backup execution/frequency, 188-189 cold sites. 190 hot sites. 190 warm sites, 190 balancing load, 184 banner grabbing, 278-279 barricades, 167 baselines application configuration baseline, 301-302 baseline reporting, 280 configuration baselines, 270 host software baselining, 346-347 bastion hosts. 7 BCP (business continuity planning), 175-176 Bcrypt, 468 behavior-based IDSs, 10

BES (BlackBerry Enterprise Server), 315.365 BIA (business impact analysis), 90, 174-175 big data, 130-131, 358-359 biometrics, 167, 414-415 birthday paradox, 229 black box testing, 287 black listing, 74, 338, 342 BlackBerry Enterprise Server (BES), 315.365 Blaster worm, 207 blind spoofing, 223 block ciphers, 444, 459 blood vessel biometrics, 415 Blowfish, 54, 459 bluejacking, 244 bluesnarfing, 244 Boink attack, 218 Bonk attack, 218 boot sector viruses, 205 botnets, 211-212 bots. 211 **BPA** (business partner agreement), 104 BPDU (bridge protocol data unit), 25 bridge CA models, 488 bridge protocol data units (BPDU), 25 bring your own device. See BYOD browser threats, 251-252 brute-force attacks, 228-229 buffer overflow exploitation, 297 buffer overflows, 252-254 business associate agreement (BAA), 105 business continuity concepts, 174 business continuity planning (BCP), 175-176 business impact analysis (BIA), 174 - 175continuity of operations, 176 critical systems and components, 175 business continuity concepts

disaster recovery, 176-177 high availability, 177-178 IT contingency planning, 177 redundancy, 178-179 risk assessment, 176 single points of failure, 175 succession planning, 177 tabletop exercises, 179-180

business continuity planning (BCP), 175-176

business impact analysis (BIA), 90, 174-175

business partners

business partner agreement (BPA), 104

on-boarding/off-boarding, 102-103

BYOD (bring your own device), 118, 324, 365

acceptance-use policy, 328 architecture/infrastructure considerations, 328 corporate policies, 327 data ownership, 325 data privacy, 326 forensics, 326 legal concerns, 328 onboard camera/video, 329 onboarding/offboarding, 326-327 patch and antivirus management, 325 support ownership, 325 user acceptance, 327

С

CA (certificate authority), 480 cables coaxial cables, 161 locks, 345 twisted-pair cabling, 162 CAC (common access card), 409 caching servers, 54 cameras (BYOD), 329 captive portals, 78 car in-vehicle computing systems, 385 cards CAC (common access card), 409 PIV (personal identity verification) card, 409 smart cards, 409 **CCMP** (Cipher Block Chaining Message Authentication Code Protocol), 246.455 **CCMP** (Counter Mode with Cipher **Block Chaining Message Authenti**cation Code Protocol), 76 CCTV (closed-circuit television), 126, 166, 199 centralized key management, 484-485 centralized solutions, 337 certificates, 196 CA (certificate authority), 480 certificate policies, 481-483 certificate revocation list (CRL), 487 digital certificates, 478-480 **Certified Secure Software Lifecycle** Professional (CSSLP), 295 chain of custody, 128-130 **Challenge Handshake Authentication** Protocol (CHAP), 411, 458 change management, 114 CHAP (Challenge Handshake Authentication Protocol), 411, 458 **Children's Online Privacy Protection** Act (COPPA), 87 **CIDR** (classless interdomain routing), 33 **Cipher Block Chaining Message** Authentication Code Protocol (CCMP), 246, 455 cipher suites, 439, 466-468 Class A fires, 160 Class B fires, 160 Class C fires, 160 Class D fires, 160 classification levels, 148-149

539 CRC (cyclic redundancy check)

classless interdomain routing (CIDR), 33 clean desk policies, 151 clear box testing, 287 client-side attacks, 227 client-side validation, 306-307 closed-circuit television (CCTV), 166. 199 cloud computing, 41, 355-357 community clouds, 43 hybrid clouds, 43 infrastructure-as-a-service (IaaS), 42 platform-as-a-service (PaaS), 41 private clouds, 42 public clouds, 43 risk management, 96-97 software-as-a-service (SaaS), 41 clustering, 183 coaxial cables, 161 code injections, 252 Code Red worm, 207 code review. 280 code security, 294-296 application configuration baseline, 301-302 application hardening, 302-305 application patch management, 305-306 client-side validation, 306-307 cross-site request forgery prevention, 299-301 error and exception handling, 296-297 input validation, 297-298 NoSQL versus SQL databases, 306 server-side validation, 306-307 XSS (cross-site scripting), 298-299 cold aisles, 163 cold sites, 190 common access card (CAC), 409 community clouds, 43 compensating controls, 169 complexity of passwords, 425

compliance, 110, 150-152 confidentiality, 194-195 access controls, 195 confidential classification level, 149 encryption, 195 steganography, 195 configuration baselines, 270 consensus, 239 content inspection, 13 continuity of operations, 176 continuous monitoring, 433-434 control redundancy and diversity, 387-388 controls, 85, 168 administrative controls, 170 compensating controls, 169 defined, 90 detective controls, 169 deterrent controls, 169 environmental controls, 157 EMI shielding, 160-162 environmental monitoring, 163 fire suppression, 158-160 hot aisles/cold aisles, 163 HVAC, 158 temperature and humidity controls, 164 management controls, 85 operational controls, 85 preventive controls, 169 technical controls, 85, 118-119, 170 cookies, 255-257 **COPPA (Children's Online Privacy** Protection Act), 87 corporate cloud, 42 corporate policies (BYOD), 327 Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP), 76 **CPS** (certificate practice statement), 482 CRC (cyclic redundancy check), 127

credential management, 322, 424 critical systems and components. identifying, 175 CRL (certificate revocation list), 487 cross-site request forgery (XSRF) prevention, 299-301 cross-site scripting (XSS), 252, 298-299 cryptography asymmetric encryption, 443-444, 460-462 cipher suites, 466-468 cryptographic hash functions, 456-458 definition of, 439 digital signatures, 447-449 elliptic curve cryptography (ECC), 444 encryption algorithms, 440 hash-based message authentication code (HMAC), 458 hashing, 449-450 history of, 439 IBE (identity-based encryption), 478 in-band key exchange, 445 IPsec (Internet Protocol Security), 466 Kerckhoff's principle, 451 keys. See keys Layer 2 Tunneling Protocol (L2TP), 465 nonrepudiation, 447-449 one-time pad (OTP), 462 out-of-band key exchange, 445 perfect forward secrecy, 446 Pretty Good Privacy (PGP), 462-463 quantum cryptography, 445 Secure Shell (SSH), 465 Secure Sockets Layer (SSL), 463-465 session keys, 445-446 steganography, 450-451 symmetric encryption algorithms, 458-460 transport encryption, 447

Transport Layer Security (TLS), 463-465 wireless encryption functions, 455-456 CryptoLocker, 212 cryptosystem, 439 CSR (certificate signing request), 482-483 CSSLP (Certified Secure Software Lifecycle Professional), 295 custody, chain of, 128-130 cyclic redundancy check (CRC), 127

D

damage and loss control, 140 data at-rest, 372-374 data backups, 108-109 data breaches, 139-140 data encryption. See encryption Data Encryption Standard (DES), 54.459 data in-transit, 372-374 data in-use, 372-374 data labeling, handling, and disposal, 150 data loss prevention (DLP), 117-119, 354, 372-374 data ownership, 108, 325 data security, 353 ACL (access control list), 375 big data, 358-359 cloud storage, 355-357 data at-rest, 372-374 data encryption databases, 361-362 FDE (full disk encryption), 360-361 files/folders, 363 mobile devices, 365-366 removable media, 363-365 selecting an encryption method, 359-360 data in-transit, 372-374 data in-use, 372-374

data policies, 376-378 hardware-based encryption devices. 366 hard drive encryption, 371-372 hardware security module (HSM), 368-369 Trusted Platform Module (TPM), 366-368 USB encryption, 370-371 permissions, 375 privacy, 326 SAN (storage-area network), 357-358 static environments, 382 Android systems, 383 application firewalls, 386 control redundancy and diversity, 387-388 embedded systems, 383 firmware version control, 387 game consoles, 384 in-vehicle computing systems, 385 iOS systems, 383 mainframes, 384 manual updates, 387 network segmentation, 385-386 supervisory control and data acquisition (SCADA) systems, 382 wrappers, 387

databases

data encryption, 361-362 NoSQL databases, 306 SQL databases, 306

DDoS (distributed DoS) attacks, 218-220

decentralized environments, 337 decentralized key management, 484-485

declassification, 377

deep packet inspection (DPI) firewalls, 15 defense in depth, 44

degaussing, 377

demilitarized zone (DMZ), 31-32

denial-of-service (DoS) attacks, 216-218 **DES** (Data Encryption Standard), 54, 459 design. See secure network design destruction of media. 377 PKI (public key infrastructure), 486 detection controls, 271-272 detective controls. 169 deterrents, 96, 169, 261 assessment technique, 280-281 detection controls versus prevention controls, 271-272 hardening, 266-268 network security, 268-269 penetration testing, 284-287 reporting, 270-271 risk calculation, 279-280 security assessment tools, 275 banner grabbing, 278-279 honeypots, 277 passive versus active tools, 278 port scanners, 277 protocol analyzers, 275-276 vulnerability scanners, 276-277 security posture, 269-270 system log monitoring, 263-265 vulnerability scanning, 285-286 device security, 313 application control, 318-319 asset tracking and inventory control, 319 BYOD (bring your own device), 324 acceptance-use policy, 328 architecture/infrastructure considerations, 328 corporate policies, 327 data ownership, 325 data privacy, 326 forensics, 326 legal concerns, 328 onboard camera/video, 329

onboarding/offboarding, 326-327 patch and antivirus management, 325 support ownership, 325 user acceptance, 327 device access control, 320 disabling unused features, 321 full device encryption, 313-314 Global Positioning System (GPS) tracking, 317-318 lockout. 316 mobile device management (MDM), 319-320 remote wiping, 314-315 removable storage, 320 screen locks, 317 storage segmentation, 319 **DHCP** (Dynamic Host Configuration Protocol), 61, 304-305 DHE (Diffie-Hellman Exchange), 446, 461 dictionary attacks, 228-229 Diffie-Hellman key exchange, 446, 461 digital certificates, 478-480 digital signatures, 196, 447-449 directional antennas, 78 directory traversal, 253 disabled accounts, 426-427 disabling unused features, 321 disaster recovery, 176-177, 185-189 discretionary access, 404-405 disks clustering, 183 imaging, 124 load balancing, 184 redundant array of independent disks (RAID), 180-183 diversity, 387-388 DLP (data loss prevention), 117-119, 354, 372-374 DMZ (demilitarized zone), 31-32

DNS (Domain Name Service), 54-55, 303 DNS poisoning, 220-221 DoS (denial-of-service) attacks, 216-218 downloader Trojans, 208 **DPI** (deep packet inspection) firewalls, 15 drills, 199 drives. See disks dry-pipe fire-suppression system, 159 dumpster diving, 237-238 duties, separation of, 89, 403 **Dynamic Host Configuration Protocol** (DHCP), 61, 304-305 dynamic ports, 65

Ε

EAP (Extensible Authentication Protocol), 24, 73 EAPOL (EAP over LAN), 73 ECC (elliptic curve cryptography), 444, 461 ECDH (Elliptic Curve Diffie-Hellman), 446 EFS (Encrypting File System), 363 EIGRPv6, 61 EK (endorsement key), 366 El Gamal encryption algorithm, 461 elasticity, 348-349 elliptic curve cryptography (ECC), 444, 461 **Elliptic Curve Diffie-Hellman** (ECDH), 446 email, 224-225, 303 embedded encryption, 314 embedded systems, 383 EMI shielding, 160-162 Encapsulating Security Payload (ESP), 51,466 Encrypting File System (EFS), 363 encryption, 195, 323, 440. See also cryptography

3DES (Triple Data Encryption Standard), 54 asymmetric encryption algorithms, 460-462 Blowfish, 54 data in-use, 372-374 databases. 361-362 DES (Data Encryption Standard), 54 FDE (full disk encryption), 360-361 files/folders. 363 full device encryption, 313-314 hardware-based encryption devices, 366 hard drive encryption, 371-372 hardware security module (HSM), 368-369 Trusted Platform Module (TPM), 366-368 USB encryption, 370-371 IDEA (International Data Encryption Algorithm), 54 keys. See keys mobile devices, 365-366 remote wiping, 314-315 removable media, 363-365 selecting an encryption method, 359-360 symmetric encryption algorithms, 458-460 endorsement key (EK), 366 enforcing policy, 424-425 enterprise cloud, 42 environmental controls, 157 EMI shielding, 160-162 environmental monitoring, 163 fire suppression, 158-160 hot aisles/cold aisles, 163 HVAC, 158 temperature and humidity controls, 164 environmental monitoring, 163 ephemeral, 446 error handling, 296-297

escalation of incidents, 135-136 escape plans, 199 escape routes, 200 escrow (kev), 450 ESP (Encapsulating Security Payload), 51.466 events (Windows), 264 evil twins. 243 exception handling, 296-297 expense tracking, 128 expired accounts, 425-426 exploits, 90 exponential key agreement, 461 **Extended Terminal Access Controller** Access Control System (XTACACS), 308 Extensible Authentication Protocol (EAP), 24, 73 extranets, 32

F

fabric, 62 facial recognition, 415 false negatives, 86 false positives, 85-86 familiarity, 240 Faraday, Michael, 161 fault tolerance, 180, 197 clustering, 183 hardware, 180 load balancing, 184 redundant array of independent disks (RAID), 180-183 servers, 184 FC (Fibre Channel), 62 FCoE (Fibre Channel over Ethernet), 62 FDE (full disk encryption), 313-314, 355, 360-361 Federal Information Processing Standards (FIPS), 362, 466 Federal Rules of Civil Procedure

(FRCP), 378

544 federation

federation. 416 fencing, 166, 198 Fibre Channel (FC), 62 Fibre Channel over Ethernet (FCoE), 62 file-format fuzzing, 294 file-level data encryption, 363 file services, 304 File Transfer Protocol (FTP), 63, 303 File Transfer Protocol Secure (FTPS), 57 filtering heuristic filtering, 338 MAC filtering, 74-75 fingerprints, 415 **FIPS (Federal Information Processing** Standards), 362, 466 fire suppression, 158-160 firewalls application firewalls, 386 DPI (deep packet inspection) firewalls, 15 explained, 3 firewall rules. 20-21 host-based firewalls, 342-343 network firewalls, 14-15 NGFW (next-generation firewalls), 15 web application firewalls, 14-15 firmware version control, 387 first responder, 138 flood guards, 24-25 folder-level data encryption, 363 forensic procedures big data analysis, 130-131 BYOD (bring your own device), 326 chain of custody, 128-130 drive imaging, 124 hashes, 127 man-hour and expense tracking, 128 network traffic logs, 125 order of volatility, 123-124

screenshots, 127-128 time offset records, 126 video capture, 125-126 witnesses. 128 forgery, 299-301 forward secrecy, 446 Fraggle attacks, 217 **FRCP** (Federal Rules of Civil Procedure), 378 frequency of backups, 188-189 FTP (File Transfer Protocol), 63, 303 FTPS (File Transfer Protocol Secure). 57 full disk encryption (FDE), 313-314, 355. 360-361 functions cryptographic hash functions, 456-458 wireless encryption functions, 455-456

fuzzing, 293-294

G

gait biometrics, 415 game consoles, 384 gateways, 7 geotagging, 323 glass box testing, 287 GPO (Group Policy objects), 424 GPS (Global Positioning System) tracking, 317-318 gray box testing, 287 group-based privileges, 431-432 group policies, 269, 424-425 group privileges, 431-432 guards, 167

Η

H.323, 38 HA (high availability), 177-178 hand/palm geometry, 415 hard drive encryption, 371-372 hard zoning, 358 hardening applications, 266-268, 302-305 DHCP services. 304-305 DNS services. 303 email services, 303 file and print services, 304 FTP services, 303 NNTP services, 303 OS hardening, 335-336 web services, 302 hardware-based encryption devices, 366 hard drive encryption, 371-372 hardware security module (HSM), 368-369 Trusted Platform Module (TPM), 366-368 USB encryption, 370-371 hardware locks, 165 hardware security, 344 cable locks, 345 locked cabinets, 346 safes, 345-346 hardware security module (HSM), 357, 368-369 hashing, 127, 196, 449-450 hash algorithms, 456-458 hash-based message authentication code (HMAC), 411, 458 hash functions, 449-450 header manipulation, 253 Health Insurance Portability and Accountability Act (HIPAA), 105, 270 heuristic filtering, 338 heuristic IDSs, 11 heuristic scanning, 337 **HIDS** (host-based intrusion detection system), 9, 86, 344 high availability, 177-178 high classification level, 148 **HIPAA** (Health Insurance Portability and Accountability Act), 105, 270

HMAC (hash-based message authentication code), 411, 458 hoaxes, 238-239 honeynets, 277 honeypots, 277 host security, 311 application security, 321-324 bastion hosts. 7 BYOD (bring your own device), 324 acceptance-use policy, 328 architecture/infrastructure considerations, 328 corporate policies, 327 data ownership, 325 data privacy, 326 forensics, 326 legal concerns, 328 onboard camera/video, 329 onboarding/offboarding, 326-327 patch and antivirus management, 325 support ownership, 325 user acceptance, 327 device security, 313 application control, 318-319 asset tracking and inventory control. 319 device access control, 320 disabling unused features, 321 full device encryption, 313-314 Global Positioning System (GPS) tracking, 317-318 lockout, 316 mobile device management (MDM), 319-320 remote wiping, 314-315 removable storage, 320 screen locks, 317 storage segmentation, 319 firewalls, 342-343 host availability/elasticity, 348-349 host-based integration, 40 operating system security, 333-335

546 host security

antivirus software, 336-338 hardware security, 344-346 host-based firewalls, 342-343 host intrusion-detection systems (HIDS), 9, 86, 344 host software baselining, 346-347 OS hardening, 335-336 patch management, 339-341 pop-up blockers, 338-339 trusted OSs. 342 virtualization, 347-349 white listing versus black listing applications, 342 host software baselining, 346-347 hot aisles. 163 hot sites. 190 hotfixes, 267, 340 HOTPs (HMAC-based one-time passwords), 411 hover ads. 339 HSM (hardware security module), 357, 368-369 HTTP (Hypertext Transfer Protocol), 64, 253 HTTPS (HTTP Secure), 57-58, 464-465 humidity controls, 164 HVAC, 158 hybrid attacks, 229 hybrid clouds, 43 Hypertext Transfer Protocol (HTTP), 64 Hypertext Transfer Protocol Secure (HTTPS), 57-58, 464-465

IaaS (infrastructure-as-a-service), 42, 356
IAX (Inter Asterisk eXchange), 38
IBE (identity-based encryption), 478
ICMP (Internet Control Message Protocol), 59-61
ICS (Internet Connection Sharing), 36
IDEA (International Data Encryption Algorithm), 54 identification, 413. See also authentication biometrics, 414-415 defined, 407 federation, 416 personal identity verification (PIV) card, 416 transitive trust/authentication, 417 usernames, 416 identity-based encryption (IBE), 478 IDS (intrusion-detection system) anomaly-based IDSs, 10-11 behavior-based IDSs, 10 heuristic IDSs. 11 HID (host-based intrusion-detection system), 9 NID (network-based intrusiondetection system), 8-9 NIP (network-based intrusionprevention system), 9-10 signature-based IDSs, 10 IEEE 802.1X standard, 24 **IETF (Internet Engineering Task** Force), 476 IKE (Internet Key Exchange), 466 impersonation, 238 implementation. See network implementation implicit deny, 25-26, 412, 432 in-band key exchange, 445 incident response, 114-115 damage and loss control, 140 data breaches, 139-140 escalation and notification, 135-136 first responder, 138 incident identification, 135 incident isolation, 138-139 lessons learned, 137 mitigation steps, 136 preparation, 134-135 recovery/reconstitution procedures, 137-138 reporting, 137

influence, principles of, 239-240 information classification levels. 148-149 Information Technology Security **Evaluation Criteria (ITSEC), 95** informed spoofing, 223 infostealer Trojans, 208 infrastructure-as-a-service (laaS), 42.356 inline integration, 39 input validation, 297-298 inspection, 13 integer overflows, 255 integrity, 196-197 Inter Asterisk eXchange (IAX), 38 interconnection security agreement (ISA), 102, 105 interference, 243 internal cloud, 42 International Data Encryption Algorithm (IDEA), 54 Internet Connection Sharing (ICS), 36 Internet Control Message Protocol (ICMP), 59 Internet Engineering Task Force (IETF), 476 Internet Key Exchange (IKE), 466 Internet Protocol Security (IPsec), 51-52, 466 Internet Security Association and Key Management Protocol (ISAKMP), 52 Internet Small Computer System Interface (iSCSI), 61 interoperability agreements, 104-105 intimidation, 239 intranets. 32 intrusion-detection systems. See IDSs in-vehicle computing systems, 385 inventory control, 319 iOS systems, 383 iostat, 275 IPsec (Internet Protocol Security), 51-52.466

IPv4, 60
IPv6, 60-61
iris scanning, 415
ISA (interconnection security agreement), 102, 105
ISAKMP (Internet Security Association and Key Management Protocol), 52
iSCSI (Internet Small Computer System Interface), 61
isolating incidents, 138-139
IT contingency planning, 177
ITSEC (Information Technology Security Evaluation Criteria), 95

J-K

jamming, 243 job rotation, 89 Kerberos, 395-397 Kerckhoff's principle, 451 keylogger Trojans, 209 keys. See also cryptography Diffie-Hellman key exchange, 446 EK (endorsement key), 366 in-band key exchange, 445 Internet Key Exchange (IKE), 466 key escrow, 450 key management, 321-322 key stretching, 468 out-of-band key exchange, 445 perfect forward secrecy, 446 PKI (public key infrastructure) CA (certificate authority), 480 centralized versus decentralized key management, 484-485 certificate policies, 481-483 destruction, 486 digital certificates, 478-480 IBE (identity-based encryption), 478 key escrow, 486 key recovery, 484

M of N control. 484

multiple key pairs, 483 overview, 473 RA (registration authority), 481 revocation, 486-487 standards, 475-477 storage, 485 trust models, 487-488 session keys, 445-446 SRK (storage root key), 366-367 symmetric key cryptography, 442-444

KoolSpan's TrustChip, 314

L

L2TP (Layer 2 Tunneling Protocol), 465 labeling data, 150 LAN Manager hash (LM hash), 457 land attacks, 217 LANMan hash, 457 Layer 2 Tunneling Protocol (L2TP), 465 layered security, 44 LDAP (Lightweight Directory Access Protocol), 397-398 LDAP injection, 252 Secure LDAP, 398 LEAP (Lightweight Extensible Authentication Protocol), 74 least privilege, 90, 336, 403 length of passwords, 428-429 lessons learned, 137 lighting, 166, 198 Lightweight Directory Access Protocol. See LDAP Lightweight Extensible Authentication Protocol (LEAP), 74 likelihood of risk, 91, 95 link-local addresses, 36 LM hash (LAN Manager hash), 457 load balancers, 6 load balancing, 184 local shared object (LSO), 256

locked cabinets, 346 lockout. 316, 427 locks, 165, 199, 345 log analysis, 26-27 logic bombs, 210-211 logical unit number (LUN) masking, 358 logon rights, 432 loas access logs, 265 Application, 263 audit logs, 265 monitoring, 263-265 network traffic logs, 125 security logs, 265 System, 263-265 loop protection, 25 loss control, 140 Love Bug, 206 low classification level, 149 LSO (local shared object), 256 LUN (logical unit number) masking, 358

Μ

M of N control, 484 MAC (Media Access Control), 5, 404 MAC filtering, 74-75 MAC flooding, 222 MAC (message authentication code), 450 macro viruses, 206 mainframes, 384 malicious add-ons, 252 malicious insider threat, 226-227 malware adware, 205 anti-malware, 336-339 armored viruses, 213 backdoors, 210 botnets, 211-212 logic bombs, 210-211

malware inspection, 13-14 polymorphic malware, 213 ransomware, 212-213 rootkits, 209-210 spyware, 207-208 Trojan horses, 208-209 viruses, 205-206 worms, 207

MAM (mobile application management), 104, 318

man-hour and expense tracking, 128

man-in-the-middle attacks, 216

management. See account management; credential management; risk management

mandatory vacations, 88

mantraps, 165

manual updates, 387

MD (message digest) series algorithm, 456-457

MD5 (Message Digest 5) hash value, 127

MDM (mobile device management), 104, 319-320, 365

mean time between failures (MTBF), 93-94

mean time to failure (MTTF), 93

mean time to repair (MTTR), 93

measurement, 94-95

Media Access Control. See MAC

media sanitation, 377

medium classification level, 149

Melissa virus, 206

memorandum of understanding (MOU), 101, 104

message authentication code (MAC), 450

Message Digest 5 (MD5) hash value, 127

message digest series algorithm, 456-457

message integrity code (MIC), 76

metrics. 154 Michelangelo virus, 206 MIC (message integrity code), 76 Microsoft Message Analyzer, 275 MIMO (multiple-input, multiple-output) antennas. 77 mitigation (risk), 96. See also deterrents audits, 116-117 change management, 114 data loss prevention (DLP), 117-119 incident management, 114-115 incident response, 136 technology controls, 118-119 user rights and permissions reviews, 115-116 mobile application management (MAM), 104, 318 mobile device management (MDM), 104, 319-320, 365-366 mobile device security. See device security Mocmex, 209 monitoring continuous monitoring, 433-434 system logs, 263-265 Morris worm, 207 motion detection, 168 MOU (memorandum of understanding), 101, 104 MTBF (mean time between failure), 93-94 MTTF (mean time to failure), 93 MTTR (mean time to repair), 93 multifactor authentication, 409-410 multipartite viruses, 206 multiple accounts, 423 multiple-input, multiple-output (MIMO) antennas, 77 multiple key pairs, 483 Mydoom worm, 207

Ν

NAC (network access control), 39-40 NAT (Network Address Translation). 36 National Institute of Standards and Technology (NIST), 91, 115 near-field communication (NFC), 247-248 **NetBIOS (Network Basic Input/Output** System), 64-65 NetStumbler, 244 network access control (NAC), 39-40 **Network Address Translation** (NAT). 36 network-based intrusion-detection system (NID), 8-9 network-based intrusion-prevention system (NIP), 9-10 **Network Basic Input/Output System** (NetBIOS), 64-65 network design, 1 ACL (access control list), 23 application-aware devices, 15-16 cloud computing, 41 community clouds, 43 hybrid clouds, 43 infrastructure-as-a-service (IaaS), 42 platform-as-a-service (PaaS), 41 private clouds, 42 public clouds, 43 software-as-a-service (SaaS), 41 defense in depth, 44 DMZ (demilitarized zone), 31-32 firewalls DPI (deep packet inspection) firewalls, 15 explained, 3 firewall rules, 20-21 network firewalls, 14-15 NGFW (next-generation firewall), 15 web application firewalls, 14-15

flood guards, 24-25 IDS (intrusion-detection system) anomaly-based IDSs, 10-11 behavior-based IDSs, 10 heuristic IDSs, 11 HID (host-based IDS), 9 NID (network-based IDS), 8-9 NIP (network-based intrusionprevention system), 9-10 signature-based IDSs, 10 IEEE 802.1X standard, 24 implicit denv, 25-26 layered security, 44 load balancers. 6 log analysis, 26-27 loop protection, 25 NAC (network access control), 39-40 NAT (Network Address Translation), 36 network separation, 26 port security, 23 protocol analyzers, 11-12 proxy servers, 6-7 RBAC (rule-based access control), 20 remote access, 37 routers, 4-5, 22-23 spam filters, 12 subnetting, 32-34 switches, 5 telephony, 37-39 UTM (unified threat management), 12-14, 27 virtualization, 40-41 VLAN (virtual local-area network), 21-22, 34-35 VPN concentrators, 8 web security gateways, 7 network firewalls, 14-15 network implementation, 49 Network Basic Input/Output System (NetBIOS), 64-65 OSI model, 67 ports, 65-66

protocols. See individual protocols wireless networks antenna placement, 76-77 antenna types, 78 captive portals, 78 Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP), 76 Extensible Authentication Protocol (EAP), 73 Lightweight Extensible Authentication Protocol (LEAP), 74 MAC filtering, 74-75 power-level controls, 77-78 Protected EAP (PEAP), 73-74 service set identifier (SSID), 75 site surveys, 79 Temporal Key Integrity Protocol (TKIP), 75-76 VPN (virtual private network), 80 Wi-Fi Protected Access (WPA), 71 Wired Equivalent Privacy (WEP), 72 WPA2, 71-72 **Network News Transfer Protocol** (NNTP), 303 network security, 268-269 network segmentation, 385-386 network separation, 26 network traffic logs, 125 New Technology File System (NTFS), 335 next-generation firewalls (NGFW), 15 NFC (near-field communication), 247-248 NGFW (next-generation firewall), 15 NID (network-based intrusiondetection system), 8-9 Nimda worm, 207 NIP (network-based intrusionprevention system), 9-10 **NIST (National Institute of Standards** and Technology), 91, 115

NNTP (Network News Transfer Protocol), 303 nonrepudiation, 197, 447-449 NoSQL databases, 306 notifications, 135-136 NTFS (New Technology File System), 335 NTLM hash (NT LAN Manager hash), 457 Nuker, 209

0

OCSP (Online Certificate Status Protocol (OCSP), 487 off-boarding, 102-103, 326-327 omnidirectional antennas, 78 onboard camera/video (BYOD), 329 on-boarding, 102-103, 326-327 one-time password (OTP), 322, 411, 462 **Online Certificate Status Protocol** (OCSP), 487 **Open Vulnerability Assessment** Language (OVAL), 276 operating system security, 333-335 antispyware software, 338 antivirus software, 336-338 hardware security, 344-346 host-based firewalls, 342-343 host intrusion-detection systems (HIDS), 344 host software baselining, 346-347 OS hardening, 335-336 patch management, 339-341 pop-up blockers, 338-339 trusted OSs, 342 virtualization, 347-349 white listing versus black listing applications, 342 operational controls, 85 operations, continuity of, 176 Orange Book (TSCEC), 405 order of volatility, 123-124

552 OSI model

OSI model, 67 OTP (one-time password), 322, 411, 462 out of band integration, 39 out-of-band key exchange, 445 OVAL (Open Vulnerability Assessment Language), 276 overwriting, 377 ownership of data, 108

Ρ

P2P (peer-to-peer) services, 153-154 PaaS (platform-as-a-service), 41, 356 packet sniffing, 245 **PAP** (Password Authentication Protocol), 411, 458 passcode unlock screens, 316 passive versus active tools, 278 password attacks, 227-230 Password Authentication Protocol (PAP), 411, 458 **Password-Based Key Derivation** Function 2 (PBKDF2), 468 passwords complexity, 425 HOTP (HMAC-based one-time password), 411 length of, 428-429 OTP (one-time password), 322, 411, 462 password history, 427-428 reusing, 428 user habits, 151 patch compatibility, 348 patches, 198, 267, 305-306, 325, 339-341 pathping, 59 Payment Card Industry Data Security Standard (PCI-DSS), 362 PBKDF2 (Password-Based Key **Derivation Function 2), 468** PBX (private branch exchange), 37 **PCI-DSS (Payment Card Industry Data** Security Standard), 362

PDP (policy decision point), 39 PDS (protected distribution system), 167 PEAP (Protected EAP), 73-74 peer-to-peer services, 153-154 pen tests. See penetration testing penetration testing, 284-287 PEP (policy enforcement point), 39 perfect forward secrecy, 446 performance standards, 110 permissions, 115-116, 375 personal identity verification (PIV) card. 409. 416 personally identifiable information (PII), 147-148 personally owned devices, 152 PGP (Pretty Good Privacy), 462-463 pharming, 226 phishing, 152, 225-226 physical security, 164-165 access lists. 166 alarms, 168 barricades, 167 biometrics, 167 fencing, 166 guards, 167 hardware locks, 165 lighting, 166 mantraps, 165 motion detection, 168 protected distribution system (PDS), 167 proximity readers, 166 video surveillance, 166 PII (personally identifiable information), 147-148 Ping floods, 217 Pingv6, 61 **PIV** (personal identity verification) card, 409, 416 PKCS (Public Key Cryptography Standards), 369, 476-477

PKI (public key infrastructure)

CA (certificate authority), 480 centralized versus decentralized key management, 484-485 certificate policies, 481-483 destruction, 486 digital certificates, 478-480 IBE (identity-based encryption), 478 key escrow, 486 key recovery, 484 M of N control, 484 multiple key pairs, 483 overview, 473 RA (registration authority), 481 revocation, 486-487 standards, 475-477 storage, 485 trust models, 487-488 PKIX working group (IETF), 476 platform-as-a-service (PaaS), 41, 356 plenum, 162 policies acceptable use policy, 88, 328 account policy, 424-425 backup policies, 186-187 backup execution/frequency, 188-189 cold sites, 190 hot sites, 190 warm sites, 190 BYOD (bring your own device), 327 certificate policies, 481-483 clean desk policies, 151 data policies, 376-378 group policies, 269 privacy policy, 87 security policy, 88, 109 policy decision point (PDP), 39 policy enforcement point (PEP), 39 polymorphic viruses, 205, 213 pop-up blockers, 338-339

ports, 65-66 port scanners, 277 port stealing, 222 port zoning, 358 security, 23 power-level controls, 77-78 Pretty Good Privacy (PGP), 462-463 prevention controls, 169, 271-272 principle of least privilege, 90, 336 principles of influence, 239-240 print services, 304 privacy BYOD (bring your own device), 326 policy, 87 risk management and, 105-106 private branch exchange (PBX), 37 private classification level, 149 private clouds, 42 private key algorithms, 442 private ports, 65 privileges group-based privileges, 431-432 privilege escalation, 226 user-assigned privileges, 432 probability, 95 program viruses, 206 protected distribution system (PDS), 167 Protected EAP (PEAP), 73-74 protocol analyzers, 11-12, 275-276 protocol fuzzing, 294 proximity readers, 166 proxy servers, 6-7 ps, 275 public clouds, 43 public data, 149-150 **Public Key Cryptography Standards** (PKCS), 369, 476-477 public kev infrastructure. See PKI

554 qualitative measures

Q-R

qualitative measures, 94 quantitative measures, 94 quantum cryptography, 445 race conditions, 298 **RACE Integrity Primitives Evaluation** Message Digest (RIPEMD), 456 **RADIUS** (Remote Authentication Dial-In User Service), 52, 394 **RAID** (redundant array of independent disks), 180-183 rainbow tables, 229 ransomware, 212-213 RA (registration authority), 481 **RAS (Remote Access Services), 37** RBAC. See role-based access control; rule-based access control RC (Rivest Cipher), 459 realms, 394 reconstitution procedures, 137-138 recovery. See also risk management account management, 426 availability, 197-198 business continuity concepts, 174 business continuity planning (BCP), 175-176 business impact analysis (BIA), 174-175 continuity of operations, 176 critical systems and components, 175 disaster recovery, 176-177 high availability, 177-178 IT contingency planning, 177 redundancy, 178-179 risk assessment, 176 single points of failure, 175 succession planning, 177 tabletop exercises, 179-180 confidentiality, 194-195 control types, 168-170 disaster recovery, 185-191

environmental controls, 157 EMI shielding, 160-162 environmental monitoring, 163 fire suppression, 158-160 hot aisles/cold aisles, 163 HVAC, 158 temperature and humidity controls, 164 integrity, 196-197 physical security, 164-165 access lists, 166 alarms, 168 barricades, 167 biometrics, 167 fencing, 166 guards, 167 hardware locks, 165 lighting, 166 mantraps, 165 motion detection, 168 protected distribution system (PDS), 167 proximity readers, 166 video surveillance, 166 PKI (public key infrastructure), 484 safety, 198-200 security-awareness training, 144-145 compliance, 150-151 data labeling, handling, and disposal, 150 information classification levels, 148-149 metrics, 154 new threats, 152-153 peer-to-peer services, 153-154 personally identifiable information (PII), 147-148 public data, 149-150 role-based training, 147 security policy training, 145-146 social networking, 153-154 user habits, 151-152 recovery point objective (RPO), 91, 97-98

555 Rinjdael

recovery procedures, 137-138 recovery time objective (RTO), 91 redundancy, 178-179, 197, 387-388 redundant array of independent disks (RAID), 180-183 registered ports, 65 registration authority (RA), 481 remote access, 37 **Remote Access Services (RAS), 37 Remote Authentication Dial-In User** Service (RADIUS), 52, 394 remote code execution, 257 remote wiping, 314-315 removable media, 320, 363-365 replay attacks, 220 reporting, 137, 270-271, 280 **Reset Account Lockout Counter After** policy setting, 427 response. See also risk management availability, 197-198 business continuity concepts, 174 business continuity planning (BCP), 175-176 business impact analysis (BIA), 174 - 175continuity of operations, 176 critical systems and components, 175 disaster recovery, 176-177 high availability, 177-178 IT contingency planning, 177 redundancy, 178-179 risk assessment, 176 single points of failure, 175 succession planning, 177 tabletop exercises, 179-180 confidentiality, 194-195 control types, 168-170 disaster recovery, 185-191 environmental controls, 157 EMI shielding, 160-162 environmental monitoring, 163 fire suppression, 158-160

hot aisles/cold aisles, 163 HVAC, 158 temperature and humidity controls, 164 integrity, 196-197 physical security, 164-165 access lists, 166 alarms, 168 barricades, 167 biometrics, 167 fencing, 166 guards, 167 hardware locks, 165 lighting, 166 mantraps, 165 motion detection, 168 protected distribution system (PDS), 167 proximity readers, 166 video surveillance, 166 safety, 198-200 security-awareness training, 144-145 compliance, 150-151 data labeling, handling, and disposal, 150 information classification levels, 148-149 metrics, 154 new threats, 152-153 peer-to-peer services, 153-154 personally identifiable information (PII), 147-148 public data, 149-150 role-based training, 147 security policy training, 145-146 social networking, 153-154 user habits, 151-152 retention policies, 377-378 retina scanning, 415 reusing passwords, 428 reverse social engineering, 235 revocation, 486-487 rights, 115-116 Rinjdael, 459

RIPEMD (RACE Integrity Primitives Evaluation Message Digest), 456

risk management, 83. See also deterrents acceptable use policy, 88 acceptance, 96 avoidance, 96 business continuity concepts, 174 business continuity planning (BCP), 175-176 business impact analysis (BIA), 174-175 continuity of operations, 176 critical systems and components, 175 disaster recovery, 176-177 high availability, 177-178 IT contingency planning, 177 redundancy, 178-179 risk assessment, 176 single points of failure, 175 succession planning, 177 tabletop exercises, 179-180 cloud computing, 96-97 control types, 85 deterrence, 96 disaster recovery, 185-191 false negatives, 86 false positives, 85-86 fault tolerance, 180 clustering, 183 hardware, 180 load balancing, 184 redundant array of independent disks (RAID), 180-183 servers, 184 forensic procedures big data analysis, 130-131 chain of custody, 128-130 drive imaging, 124 hashes, 127 man-hour and expense tracking, 128 network traffic logs, 125

order of volatility, 123-124 screenshots, 127-128 time offset records, 126 video capture, 125-126 witnesses. 128 incident response damage and loss control, 140 data breaches, 139-140 escalation and notification. 135-136 first responder, 138 incident identification, 135 incident isolation, 138-139 lessons learned, 137 mitigation steps, 136 preparation, 134-135 recovery/reconstitution procedures, 137-138 reporting, 137 job rotation, 89 least privilege, 90 mandatory vacations, 88 mitigation, 96 privacy policy, 87 probability, 95 qualitative measures, 94 quantitative measures, 94 recovery point objective (RPO), 97-98 recovery time objective (RTO), 97 - 98risk assessment, 176 risk awareness, 106-107 risk calculation, 90-91 annual rate of occurrence (ARO), 92 annualized loss expectancy (ALE), 92 impact, 91 likelihood, 91 mean time between failures (MTBF), 93-94 mean time to failure (MTTF), 93 mean time to repair (MTTR), 93

Scalable Encryption Processing (SEP) modules,

557

single loss expectancy (SLE), 91-92 risk defined. 90 risk mitigation audits, 116-117 change management, 114 data loss prevention (DLP), 117-119 incident management, 114-115 technology controls, 118-119 user rights and permissions reviews, 115-116 security policy, 88 separation of duties, 89 third parties applications, 103-104 compliance and performance standards, 110 data backups, 108-109 data ownership, 108 interoperability agreements, 104-105 on-boarding/off-boarding business partners, 102-103 privacy considerations, 105-106 risk awareness, 106-107 security policy and procedures, 109 social media networks, 103-104 unauthorized data sharing, 107 threat likelihood, 95 threat vectors, 95 transference, 96 virtualization, 96-97 vulnerabilities, 94-95 Rivest Cipher (RC), 459 **Rivest, Shamir, and Adleman** encryption algorithm (RSA), 461 rogue access points, 243-244 role-based access control, 406 role-based training, 147 rootkits, 209-210 round-trip time (RTT), 59

routers, 4-5, 22-23 **Routing and Remote Access** (RRAS), 37 RPO (recovery point objective), 91, 97-98 **RRAS** (Routing and Remote Access). 37 RSA (Rivest, Shamir, and Adleman) encryption algorithm, 461 RTO (recovery time objective), 91, 97-98 RTT (round-trip time), 59 rule-based access control (RBAC), 20, 405-406 rules firewall rules, 20-21

RBAC (rule-based access control), 20, 405-406

S

SaaS (software-as-a-service), 41, 356-357 SAFECode (Software Assurance Forum for Excellence in Code), 295 safes. 345-346 safety, 198-200 closed-circuit television (CCTV), 199 drills, 199 escape plans, 199 escape routes, 200 fencing, 198 lighting, 198 locks. 199 testing controls, 200 SAML (Security Assertion Markup Language), 398 SAN (storage-area network), 357-358 sandboxing, 349, 383 sanitization, 377 SCADA (supervisory control and data acquisition) systems, 382 Scalable Encryption Processing (SEP) modules, 8

558 scanning

scanning heuristic scanning, 337 port scanners, 277 vulnerability scanning, 276-277, 285-286 scarcity, 240 SCP (Secure Copy Protocol), 58, 465 screen locks, 317 screenshots, 127-128 sealed storage, 367 secret key algorithms, 442 secure coding concepts, 294-296 application configuration baseline, 301-302 application hardening, 302-305 application patch management, 305-306 client-side validation, 306-307 cross-site request forgery prevention, 299-301 error and exception handling, 296-297 input validation, 297-298 NoSQL versus SQL databases, 306 server-side validation, 306-307 XSS (cross-site scripting), 298-299 Secure Copy Protocol (SCP), 58, 465 Secure File Transfer Protocol (SFTP), 63 Secure Hash Algorithm (SHA), 456 Secure Hypertext Transport Protocol (S-HTTP), 58 Secure LDAP, 398 Secure Login (slogin), 465 secure network design, 1 ACL (access control list), 23 application-aware devices, 15-16 cloud computing, 41 community clouds, 43 hybrid clouds, 43 infrastructure-as-a-service (IaaS), 42 platform-as-a-service (PaaS), 41 private clouds, 42

public clouds, 43 software-as-a-service (SaaS), 41 defense in depth, 44 DMZ (demilitarized zone), 31-32 firewalls DPI (deep packet inspection) firewalls, 15 explained, 3 firewall rules, 20-21 network firewalls, 14-15 NGFW (next-generation firewalls), 15 web application firewalls, 14-15 flood guards, 24-25 IDS (intrusion-detection system) anomaly-based IDSs, 10-11 behavior-based IDSs, 10 heuristic IDSs, 11 HID (host-based IDS), 9 NID (network-based IDS), 8-9 NIP (network-based intrusionprevention system), 9-10 signature-based IDSs, 10 IEEE 802.1X standard, 24 implicit deny, 25-26 layered security, 44 load balancers. 6 log analysis, 26-27 loop protection, 25 NAC (network access control), 39-40 NAT (Network Address Translation), 36 network separation, 26 port security, 23 protocol analyzers, 11-12 proxy servers, 6-7 RBAC (rule-based access control), 20 remote access, 37 routers, 4-5, 22-23 spam filters, 12 subnetting, 32-34 switches, 5 telephony, 37-39

559

S-HTTP (Secure Hypertext Transport Protocol)

UTM (unified threat management), 12-14, 27 virtualization, 40-41 VLAN (virtual local-area network), 21-22, 34-35 VPN concentrators, 8 web security gateways, 7 Secure Shell (SSH), 53-54, 465 Secure Sockets Laver (SSL), 55-56. 463-465 Security Assertion Markup Language (SAML), 398 security assessment tools, 275 banner grabbing, 278-279 honeypots, 277 passive versus active tools, 278 port scanners, 277 protocol analyzers, 275-276 vulnerability scanners, 276-277 security-awareness training, 144-145 compliance, 150-151 data labeling, handling, and disposal, 150 information classification levels. 148-149 metrics, 154 new threats, 152-153 peer-to-peer services, 153-154 personally identifiable information (PII), 147-148 public data, 149-150 role-based training, 147 security policy training, 145-146 social networking, 153-154 user habits, 151-152 security control testing, 349 security guards, 167 security information and event management (SIEM), 119 security logs, 265 security policy, 88, 109, 145-146 security posture, 269-270 security templates, 269

SED (self-encrypting drive), 371 segmentation network segmentation, 385-386 storage segmentation, 319 self-encrypting drive (SED), 371 separation of duties, 89, 403 SEP (Scalable Encryption Processing) modules. 8 server-side validation, 306-307 servers DNS servers, 54-55 fault tolerance, 184 proxy servers, 6-7 service level agreement (SLA), 104, 177 service packs, 267, 340 service set identifier (SSID), 75 services DHCP (Dynamic Host Configuration Protocol), 304-305 DNS (Domain Name Service), 303 email services, 303 file and print services, 304 FTP (File Transfer Protocol), 303 NNTP (Network News Transfer Protocol), 303 web services. 302 session hijacking, 251 Session Initiation Protocol (SIP), 38 session keys, 445-446 SFTP (Secure File Transfer Protocol), 63 SHA (Secure Hash Algorithm), 456 sharing shared accounts, 423 shared secret algorithms, 442 unauthorized data sharing, 107 shielded twist pair (STP), 162 Shiva Password Authentication Protocol (SPAP), 458 shoulder surfing, 236-237 S-HTTP (Secure Hypertext Transport Protocol), 58

560 SIEM (security information and event management)

SIEM (security information and event management), 119 signatures digital signatures, 196, 447-449 signature-based IDs, 10 signature biometrics, 415 Simple Network Management Protocol (SNMP), 52-53, 264 Simpsons, 209 single loss expectancy (SLE), 91-92 single points of failure, 175 single sign-on (SSO), 412 SIP (Session Initiation Protocol), 38 site surveys, 79 SLA (service level agreement), 104, 177 slag code, 211 slash (/) separator, 33 SLE (single loss expectancy), 91-92 slogin (Secure Login), 465 smart cards, 409 smishing, 226 smoke detection, 158 SMS phishing, 226 smurfing, 217 snapshots, 347-348 sniffers, 275 **SNMP** (Simple Network Management Protocol), 52-53, 264 social engineering attacks dumpster diving, 237-238 explained, 235-236 hoaxes, 238-239 impersonation, 238 principles of influence, 239-240 shoulder surfing, 236-237 tailgating, 238 social networking risk management, 103-104 security-awareness training, 153-154 social proof, 239 "soft" systems, 266

software-as-a-service (SaaS), 41, 356-357 software assurance, 295 Software Assurance Forum for Excellence in Code (SAFECode), 295 software exploitation, 306 software zoning, 358 spam, 12, 224-225, 337-338 spanning-tree algorithm, 25 Spanning Tree Protocol (STP), 25 SPAP (Shiva Password Authentication Protocol), 458 spear phishing, 225 spoofing, 223-224 spyware, 207-208, 338 SQL databases, 306 SQL injection, 252 SRK (storage root key), 366-367 SSH (Secure Shell), 53-54, 465 SSID (service set identifier), 75 SSL (Secure Sockets Layer), 55-56, 463-465 SSO (single sign-on), 412 standards compliance and performance standards, 110 PKI (public key infrastructure), 475-477 stateful connections. 56 static environments, 382 Android systems, 383 application firewalls, 386 control redundancy and diversity, 387-388 embedded systems, 383 firmware version control, 387 game consoles, 384 in-vehicle computing systems, 385 iOS systems, 383 mainframes, 384 manual updates, 387 network segmentation, 385-386

supervisory control and data acquisition (SCADA) systems, 382 wrappers, 387 steganography, 195, 450-451 storage cloud storage, 355-357 PKI (public key infrastructure), 485 SAN (storage-area network), 357-358 sealed storage, 367 segmentation, 319 storage and retention policies, 377-378 storage root key (SRK), 366-367 Storm botnet, 212 STP (shielded twisted pair), 162 STP (Spanning Tree Protocol), 25 stream ciphers, 444, 459 subnetting, 32-34 succession planning, 177 sudo. 423 supervisory control and data acquisition (SCADA) systems, 382 support ownership (BYOD), 325 switch-based integration, 40 switches. 5 symmetric encryption algorithms, 458-460 symmetric key cryptography, 442-444 SYN floods, 217 System event log, 263-265 system image capture, 124

Т

system logs, 263-265

tabletop exercises, 179-180 TACACS (Terminal Access Controller Access Control System), 394-395 tailgating, 152, 238 Target, 139 TCG (Trusted Computing Group), 371 TCO (total cost of ownership), 88 **TCP/IP** (Transmission Control Protocol/Internet Protocol), 56-57 **TCSEC (Trusted Computer System** Evaluation Criteria), 335, 405 Teardrop attack, 218 technology controls, 85, 118-119, 170 telephony, 37-39 Telnet. 64 temperature controls, 164 TEMPEST. 161 templates, security, 269 **Temporal Key Integrity Protocol** (TKIP), 75-76, 455 Terminal Access Controller Access Control System (TACACS), 394-395 testing penetration testing, 284-287 sandboxing, 349 security control testing, 349 testing controls, 200 **TFTP** (Trivial File Transfer Protocol), 64 theft. 117-119 third-party risk applications, 103-104 compliance and performance standards, 110 data backups, 108-109 data ownership, 108 interoperability agreements, 104-105 on-boarding/off-boarding business partners, 102-103 privacy considerations, 105-106 risk awareness, 106-107 security policy and procedures, 109 social media networks, 103-104 unauthorized data sharing, 107 threats, 90 likelihood, 95 new threat training, 152-153 threat vectors, 95 time-of-day restrictions, 406-407 time offset records, 126

562 TKIP (Temporal Key Integrity Protocol)

TKIP (Temporal Key Integrity Protocol), 75-76, 455 TLS (Transport Layer Security), 55, 463-465 tokens, 408 tools, 275 banner grabbing, 278-279 honeypots, 277 passive versus active tools, 278 port scanners, 277 protocol analyzers, 275-276 vulnerability scanners, 276-277 total cost of ownership (TCO), 88 TPM (Trusted Platform Module), 355, 366-368 traceroute, 59 tracking assets. 319 man-hours and expenses, 128 traffic logs, 125 training (security-awareness), 144-145 compliance, 150-151 data labeling, handling, and disposal, 150 information classification levels. 148-149 metrics, 154 new threats, 152-153 peer-to-peer services, 153-154 personally identifiable information (PII), 147-148 public data, 149-150 role-based training, 147 security policy training, 145-146 social networking, 153-154 user habits, 151-152 transference of risk, 96 **Transient Electromagnetic Pulse Emanation Standard, 161** transitive access, 227 transitive trust/authentication, 324, 417

Transmission Control Protocol/ Internet Protocol (TCP/IP), 56-57 transmit power control, 78 transport encryption, 447 Transport Laver Security (TLS), 55. 463-465 trends. 271 **Triple Data Encryption Standard** (3DES), 54, 459 Trivial File Transfer Protocol (TFTP), 64 Trojan horses, 208-209 TrueCrypt, 364 trust, 240 trust models, 487-488 TrustChip, 314 **Trusted Computer System Evaluation** Criteria (TCSEC), 335, 405 Trusted Computing Group (TCG), 371 trusted operating systems, 342 trusted OS, 412 Trusted Platform Module (TPM), 355. 366-368 twisted-pair cabling, 162 typo squatting, 230-231

U

UAC (User Account Control) technology, 430 ULA (unique local address), 36 unauthorized data sharing, 107 Unicode hash, 457 unified threat management. See UTM (unified threat management) unique local addresses (ULA), 36 unsealing, 367 unshielded twist pair (UTP), 162 unsolicited entry, 222 updates, manual, 387 urgency, 240 URL filters, 13 URL hijacking, 230-231 USB encryption, 370-371 user access reviews, 433 User Account Control (UAC) technology, 430 user-assigned privileges, 432 user habits, 151-152 user rights and permissions reviews, 115-116 usernames, 416 UTM (unified threat management), 12, 27 content inspection, 13 malware inspection, 13-14 URL filters, 13 UTP (unshielded twist pair), 162

V

vacations, mandatory, 88 validation client-side validation, 306-307 input validation, 297-298 server-side validation, 306-307 VeriSign, 480 version control, 387 video BYOD (bring your own device), 329 video capture, 125-126 video surveillance, 166 virtual local-area network (VLAN), 21-22. 34-35 virtual private network (VPN), 8, 80 virtual private storage, 357 virtualization, 40-41, 347 host availability/elasticity, 348-349 patch compatibility, 348 risk management, 96-97 sandboxing, 349 security control testing, 349 snapshots, 347-348 viruses antivirus software, 336-337 armored viruses, 213

explained, 205-206 new viruses, 152 vishing, 226 VLAN (virtual local-area network), 21-22, 34-35 vmstat, 275 Voice over IP (VoIP), 37 voiceprint, 415 VoIP (Voice over IP), 37 volatility, order of, 123-124 VPN (virtual private network), 8, 80 vulnerabilities, 90, 94-95, 276-277, 285-286 Vundo, 209

W

war chalking, 75, 244 war driving, 75, 244 warm sites. 190 watering hole attacks, 231 web application firewalls, 14-15 web of trust, 488 web security gateways, 7 web services, 302 well-known ports, 65 WEP (Wired Equivalent Privacy), 72, 245-246. 455 wet-pipe fire-suppression system, 159 whaling, 225 white box testing, 287 white listing, 74, 323-324, 338, 342 whole disk encryption, 360-361 Wi-Fi Protected Access. See WPA Wi-Fi Protected Setup (WPS), 247 Windows events, 264 wiping data, 314-315, 376-377 Wired Equivalent Privacy (WEP), 72, 245-246, 455 wireless attacks bluejacking, 244 bluesnarfing, 244 jamming/interference, 243

near-field communication (NFC), 247-248 packet sniffing, 245 rogue access points, 243-244 war driving, 244 WEP/WPA attack, 245-246 WPS attacks, 247

wireless encryption functions, 455-456

wireless networks

antennas, 76-78 captive portals, 78 Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP), 76 Extensible Authentication Protocol (EAP), 73 Lightweight Extensible Authentication Protocol (LEAP), 74 MAC filtering, 74-75 power-level controls, 77-78 Protected EAP (PEAP), 73-74 service set identifier (SSID), 75 site surveys, 79 Temporal Key Integrity Protocol (TKIP), 75-76 VPN (virtual private network), 80 Wi-Fi Protected Access (WPA), 71 Wired Equivalent Privacy (WEP), 72 WPA2, 71-72 witnesses, 128

World Wide Numbers (WWN), 358 worms, 207

WPA (Wi-Fi Protected Access),
71, 455
WEP/WPA attacks, 245-246
WPA-Enterprise, 455
WPA-Personal, 455
WPA2, 71-72, 455-456
WPS (Wi-Fi Protected Setup), 247

wrappers, 367, 387 WWN (World Wide Numbers), 358

X-Y-Z

X.509 standard, 479-480
Xmas Tree attack, 218
XML injection, 252
XSRF (cross-site request forgery) prevention, 299-301
XSS (cross-site scripting), 252, 298-299
XTACACS (Extended Terminal Access Controller Access Control System), 398
zero-day attacks, 153, 253-254
Zimmerman, Phillip R., 462

zombie army, 211 zoning, 358